-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathnet_structure.py
272 lines (228 loc) · 13.5 KB
/
net_structure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import settings
from models.specs import get_update_ops, keep_my_loss, my_losses, ModelsSaveLoadManager
from models.specs.heatmap import FeatureMap, HeatMap
from models.specs.heatmap import heatmap_loss_xent, heatmap_loss_sigmoid
from models.specs.unet import reconstruction_loss, UnetSmoother
from models.specs.regression import reg_loss, BoxRegression
from models.specs import word_embeddings
from models.specs.roi_pooling_features import iou_loss, phoc_loss_func, IoUPrediction
from models.specs.random_boxes import random_boxes_ops
from models.specs import TFNetwork
from settings import get_train_op
reduction = tf.reduce_mean
def get_word_embedding_model(name):
""" Helper to select a word embedding model from command line argument"""
assert hasattr(word_embeddings, name), '%s does not exists' % name
ModelCls = getattr(word_embeddings, name)
assert issubclass(ModelCls, TFNetwork), '%s is not a Valid Word Embedding model' % name
return ModelCls
class NetworkStructure(object):
"""
We have two modes of operation:
* one step heatmap or two step (additional U-net smoother for the heatmap)
* segmentation-free - predict word bounding box locations using a regression network (otherwise we assume gt_boxes are available
this is used to evaluate PHOC in segmentation based scenario)
* with PHOCs or w.o. PHOCs
*
"""
def __init__(self, P, experiment_dir):
self.P = P
self.exp_dir = experiment_dir
segmentation_free = P.segment_free
build_phocs = P.phoc_dim > 0
self.inputs = inputs = settings.get_inputs(P.batch_size, P.target_size, phoc_dim=P.phoc_dim)
# Helper to manage diffrenet parts of the model
self.models = models = ModelsSaveLoadManager(exp_dir=experiment_dir)
input_img = inputs.images
feature_map = FeatureMap(exp_dir=experiment_dir, args=P, scope='fmap')
models.add_model(feature_map)
# (1) Features
fmap_input = input_img
features = feature_map.small(fmap_input)
# (2) Heatmap
out_cls = 3 if P.hmap_border else 1
heatmap = HeatMap(output_size=out_cls, scope='hmap', args=P, exp_dir=experiment_dir)
models.add_model(heatmap)
hmap_logits = heatmap.heatmap(features)
hmap = tf.nn.sigmoid(hmap_logits, name='probability_map') if not P.hmap_border else tf.nn.softmax(hmap_logits, dim=-1, name='probability_map')
if P.hmap_border:
L_hmap = heatmap_loss_xent(y=inputs.gt_heatmap, y_hat=hmap_logits, weight_pos=P.heatmap_pos_cls_weight,
weight_neg=P.heatmap_neg_cls_weight, with_border=P.hmap_border)
else:
hmap_logits_for_loss = hmap_logits
L_hmap = heatmap_loss_sigmoid(y=inputs.gt_heatmap, y_hat=hmap_logits_for_loss, weight_pos=P.heatmap_pos_cls_weight,
weight_neg=P.heatmap_neg_cls_weight, reduction=reduction)
keep_my_loss(L_hmap)
# (2a) Heatmap Smoothing U-NET
if P.unet_size > 0:
hmap_smoother = UnetSmoother(out_size=out_cls, size=P.unet_size, down_layers=P.unet_depth, scope='hmap_smoother', args=P, exp_dir=experiment_dir)
models.add_model(hmap_smoother)
smoother_input = hmap if not P.unet_with_img else tf.concat([hmap, input_img], axis=-1, name='unet_input')
smooth_logits = hmap_smoother.unet(smoother_input)
if P.hmap_border:
self.smooth_hmap = smooth_hmap = tf.nn.softmax(smooth_logits, dim=-1, name='smoother_prob_map')
L_smooth = heatmap_loss_xent(y=inputs.gt_heatmap, y_hat=smooth_logits, weight_pos=1., weight_neg=1., with_border=P.hmap_border)
else:
# NOTE: In case of binary heatmap we use L1 reconstruction loss
self.smooth_hmap = smooth_hmap = tf.nn.sigmoid(smooth_logits, name='smoother_prob_map')
L_smooth = reconstruction_loss(y=inputs.gt_heatmap, y_hat=smooth_hmap, name='L_smoother')
keep_my_loss(L_smooth)
# (4) Regression
if segmentation_free:
regression = BoxRegression(scope='box_reg', exp_dir=experiment_dir, args=P)
models.add_model(regression)
# Do we use smoother? (we do if unet size is positive)
reg_hmap_input = smooth_hmap if P.unet_size > 0 else hmap
# Do we even use the heatmap? (We only skip the heatmap for ablation analysis)
reg_input = input_img if P.hmap_ablation else reg_hmap_input
reg_features = regression.features(reg_input)
pred_shifts = regression.box_shifts(reg_features)
batched_boxes = regression.shifts_to_boxes(pred_shifts, inputs.anchor_points, inputs.images)
pool_boxes = regression.filter_boxes_on_size(batched_boxes)
L_reg = reg_loss(y=inputs.gt_deltas, y_hat=pred_shifts, inside_box_flags=inputs.point_labels,
scope=regression.scope, weight_pos=P.box_reg_pos_cls_weight, weight_neg=P.box_reg_neg_cls_weight,
batch_size=P.batch_size)
keep_my_loss(L_reg)
else:
# For segmentation based we use gt boxes as our "predictions"
pool_boxes = inputs.gt_boxes
self.pool_boxes = pool_boxes
# (5) PHOCS
if build_phocs:
WordModel = get_word_embedding_model(P.embed_model)
word_embed = WordModel(scope='phoc', output_shape=(3, 9), exp_dir=experiment_dir, args=P)
models.add_model(word_embed)
pooled_phoc = word_embed.base_pooling(features, pool_boxes)
phoc_logits = word_embed.phocs(pooled_phoc)
self.pred_phocs = pred_phocs = tf.sigmoid(phoc_logits, name='phocs')
# Use GT loss in segmentation based scenario - segmentation free uses random training (see below)
if not segmentation_free:
L_phoc = phoc_loss_func(y=inputs.gt_phocs[:, 1:], y_hat=phoc_logits, scope='phoc_loss', reduction=reduction)
keep_my_loss(L_phoc)
else:
L_phoc = tf.constant(0.0, name='no_phocs')
# (6) IoU Classifier
if segmentation_free:
iou_estimator = IoUPrediction(output_shape=(16, 64), args=P, exp_dir=experiment_dir, scope='iou')
pooling_hmap = smooth_hmap if P.unet_size > 0 else hmap
pooled_features = iou_estimator.base_pooling(pooling_hmap, pool_boxes) if not P.hmap_ablation else iou_estimator.base_pooling(input_img, pool_boxes)
models.add_model(iou_estimator)
pred_iou_logits = iou_estimator.iou(pooled_features)
# Our predicted boxes (after filtering etc..)
self.good_boxes = iou_estimator.get_good_boxes(pred_iou_logits, pool_boxes)
if build_phocs:
# Our predicted word embeddings (after filtering etc..)
self.good_phocs = iou_estimator.get_good_embedding(pred_phocs)
else:
self.good_boxes = pool_boxes
if build_phocs:
self.good_phocs = pred_phocs
# (7) Random Training for IoU and Phocs
if segmentation_free:
rnd_boxes, rnd_iou_labels, rnd_phocs = random_boxes_ops(inputs.gt_boxes, scope='roi_pool',
num_classes=P.box_filter_num_clsses,
default_image_size=P.target_size,
gt_phocs=inputs.gt_phocs if build_phocs else None,
phoc_dim=P.phoc_dim,
iou_cls_lower_bound=P.iou_cls_lower_bound,
boxes_per_class=P.boxes_per_class,
batch_size=P.batch_size)
self.rnd_phocs = rnd_phocs
self.rnd_boxes = rnd_boxes
self.rnd_iou_labels = rnd_iou_labels
# (7a) Random IoU prediction
if P.hmap_ablation:
rnd_pooled_features = iou_estimator.base_pooling(input_img, rnd_boxes)
else:
rnd_pooled_features = iou_estimator.base_pooling(pooling_hmap, rnd_boxes)
rnd_iou_logits = iou_estimator.iou(rnd_pooled_features)
# (7b)Iou Loss
L_iou = iou_loss(y=rnd_iou_labels, y_hat=rnd_iou_logits, scope='roi_pool')
keep_my_loss(L_iou)
# (7c) Random PHOC prediction
if build_phocs:
pooled_phoc = word_embed.base_pooling(features, rnd_boxes)
v_phoc = pooled_phoc
rnd_phoc_logits = word_embed.phocs(v_phoc)
if P.aux_iou:
# Use IoU loss as regularizer for PHOC loss
aux_iou_logits = word_embed.aux_iou(v_phoc)
L_aux_iou = iou_loss(y=rnd_iou_labels, y_hat=aux_iou_logits, scope='aux_iou_loss')
keep_my_loss(L_aux_iou)
# (7d) PHOC loss
# We train phocs only on highly accuracte random boxes
accuracte_phocs = tf.where(rnd_iou_labels >= P.min_iou_cls_for_phoc, name='acc_phocs_idx')[:, 0]
good_iou_phocs = tf.gather(rnd_phocs, accuracte_phocs, name='acc_phocs')
good_iou_logits = tf.gather(rnd_phoc_logits, accuracte_phocs, name='acc_phocs_logits')
L_phoc = phoc_loss_func(y=good_iou_phocs, y_hat=good_iou_logits, scope='phoc_loss', reduction=reduction)
keep_my_loss(L_phoc)
self.update_ops = update_ops = get_update_ops()
L2_regularization = tf.add_n(tf.losses.get_regularization_losses(), name='l2_reg') \
if tf.losses.get_regularization_losses() else tf.constant(0., name='l2_reg')
keep_my_loss(L2_regularization)
# We can train parts of the network by setting train_vars to not None values (see command line help for accepted format)
if P.train_vars is not None and (P.train_hmap or P.unet_size < 1):
var_list = []
loss_list = [L2_regularization]
if 'fmap' in P.train_vars:
var_list += feature_map.vars()
loss_list += [P.heatmap_total_loss_weight * L_hmap]
if 'hmap' in P.train_vars:
var_list += heatmap.vars()
if not 'fmap' in P.train_vars:
loss_list += [P.heatmap_total_loss_weight * L_hmap]
if 'smoother' in P.train_vars and P.unet_size > 0:
var_list += heatmap.vars()
loss_list += [P.heatmap_total_loss_weight * L_smooth]
if 'phoc' in P.train_vars and build_phocs:
var_list += word_embed.vars()
loss_list += [P.phoc_loss_weight * L_phoc]
if P.aux_iou:
loss_list += [P.iou_predictions_loss_weight*L_aux_iou]
else:
var_list = feature_map.vars() + heatmap.vars() + hmap_smoother.vars()
loss_list = [P.heatmap_total_loss_weight * L_hmap, P.heatmap_total_loss_weight * L_smooth,
P.phoc_loss_weight * L_phoc, L2_regularization]
if build_phocs:
var_list += word_embed.vars()
L_hmap_phoc = tf.add_n(loss_list, name='hmap_and_phoc_loss')
# Make train-op for hmap training
if var_list:
self.train_hmap, self.gs_hmap = get_train_op(L_hmap_phoc, P.lr_hmap, P, P.iters, var_list, update_ops=update_ops, name='hmap_train',
optimizer=tf.train.AdamOptimizer, beta1=0.5)
models.add_vars(self.gs_hmap)
if segmentation_free:
if P.train_vars is not None and P.train_regression:
box_var_list = []
if 'reg' in P.train_vars:
box_var_list += regression.vars()
if 'iou' in P.train_vars:
box_var_list += iou_estimator.vars()
else:
box_var_list = regression.vars() + iou_estimator.vars()
L2_boxes_regularization = tf.add_n(tf.losses.get_regularization_losses('.*%s|%s.*$' % (regression.scope, iou_estimator.scope)), name='l2_box_reg')
L_boxes = tf.add_n([L_reg, P.iou_predictions_loss_weight * L_iou, L2_boxes_regularization], name='reg_iou_loss')
# Make train-op for regression training
if box_var_list:
self.train_boxes, self.gs_reg = get_train_op(L_boxes, P.lr_boxes, P, P.iters, box_var_list, update_ops=update_ops, name='boxes_train',
optimizer=tf.train.AdamOptimizer, beta1=0.5)
models.add_vars(self.gs_reg)
keep_my_loss(L_boxes)
# Train summaries
scalar_sums = my_losses()
if var_list:
scalar_sums += [self.gs_hmap]
if segmentation_free:
scalar_sums += [self.gs_reg]
images_sum = [inputs.images, inputs.box_viz_images]
images_sum += [hmap, inputs.gt_heatmap]
if P.unet_size > 0:
images_sum += [smooth_hmap]
histo_sums = [hmap, inputs.gt_heatmap, features]
if build_phocs:
histo_sums += [inputs.gt_phocs]
settings.make_summaries(scalars=scalar_sums, histograms=histo_sums, images=images_sum)