-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain.py
231 lines (176 loc) · 9.77 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from tensorflow.contrib.keras.api.keras import backend as Kb
import settings
import statistics as st
from models.specs import my_losses
from models.specs.random_boxes import tf_format_to_abs
from lib import helpers as utils
from lib.show_images import debugShowBoxes
from net_structure import NetworkStructure
def debug_pipe(train_pipe):
for i in range(1200):
batch = train_pipe.pull_data()
words = batch['meta_image'][0].word_list
debugShowBoxes(batch['image'][0, :].astype(np.uint8) / 255. / 255., boxes=batch['gt_boxes'][:, 1:], titles=words)
def run(train_iterator, train_iters, P, experiment_dir='./', log_steps=30, save_steps=1000, train_mode=True, segmentation_free=False,
seed=128, num_producer_threads=1):
np.random.seed(seed)
tf.set_random_seed(seed)
build_phocs = P.phoc_dim > 0
experiment_dir, logger = settings.get_exp_dir_and_logger(experiment_dir)
train_pipe = settings.get_pipeline(P, train_iterator, num_producer_threads, augmentations=train_mode, crop_words=P.crop_words)
network = NetworkStructure(P, experiment_dir)
summary_op = tf.summary.merge_all()
sess = settings.get_session(P)
with sess.as_default():
tb_writer = utils.TensorBoardFiles(experiment_dir, P.log_prefix, sess)
# Init all variables
init_op = tf.global_variables_initializer()
sess.run(init_op)
logger('Initialized vars')
network.models.load(sess)
# Global Step reset
if P.reset_gs:
gss = []
if hasattr(network, 'gs_reg'):
gss.append(network.gs_reg)
if hasattr(network, 'gs_hmap'):
gss.append(network.gs_hmap)
sess.run(tf.variables_initializer(gss))
save_path = experiment_dir / ('eval' if P.stat_prefix is None else P.stat_prefix if P.eval_run else 'train')
tf_op_timer = utils.Timer()
pipe_timer = utils.Timer()
stats_timer = utils.Timer()
av_losses = utils.RunningAverages(num_of_averages=len(my_losses()), max_length=log_steps)
runners = []
NORMALIZE = P.image_normalize_const
if train_mode:
if P.train_hmap:
runners += [(network.train_hmap, 'hmap', network.gs_hmap, sess.run(network.gs_hmap))]
if P.train_regression and train_mode:
runners += [(network.train_boxes, 'regression', network.gs_reg, sess.run(network.gs_reg))]
else:
runners += [(network.train_hmap, 'eval', network.gs_hmap, sess.run(network.gs_hmap))]
print ('Goiong for %d runners' % len(runners))
for train_op, train_mode, global_step, strt_iter in runners:
logger('Starting %s from: %d to: %d' % (train_mode, strt_iter, train_iters + 1))
strt_iter = 0 if P.eval_run else strt_iter
train_type = train_mode if train_mode else 'Eval'
# Setting-up tf output ops
execution = {'gs': global_step, 'losses': my_losses(), 'good_boxes': network.good_boxes}
if train_mode:
execution['train_op'] = train_op
execution['random_boxes'] = network.rnd_boxes if segmentation_free else network.pool_boxes
if segmentation_free:
execution['random_iou_labels'] = network.rnd_iou_labels
else:
execution['update_os'] = network.update_ops
if build_phocs:
execution['good_phocs'] = network.good_phocs
for i in range(strt_iter, train_iters + 1):
# Pull data
pipe_timer.tic()
batch = train_pipe.pull_data()
if batch is None:
break
# Normalize image
original_image = batch['image'].copy()
batch['image'] = batch['image'].astype(np.float32) / NORMALIZE
feed_dict = settings.feed_dict_from_dict(network.inputs, batch, train_pipe, P, train_mode=True)
feed_dict.update({Kb.learning_phase(): 1*(train_mode)})
pipe_timer.toc()
# Train
tf_op_timer.tic()
res = sess.run(execution, feed_dict)
tf_op_timer.toc()
gs = res['gs']
# Update Running averages
av_losses.update(res['losses'])
# Log steps
stats_timer.tic()
if i % log_steps == 0 or not train_mode:
logger('-%6d / %6d- GS [%6d] DataTime [%4.2fs] GPUTime [%4.2fs] StatsTime [%4.2fs]-%s [%s]-' %
(i, train_iters, gs, pipe_timer.average(), tf_op_timer.average(), stats_timer.average(), train_type, P.name))
# Print out loss names and average values
logger(' '.join(['%s [%5.4f]' % (v, w()) for v, w in zip([x.name.split('/')[0] for x in my_losses()], av_losses())]))
# Evaluation Run statistics
if not train_mode:
# get boxes with their scores
good_boxes_pred = res['good_boxes']
abs_good_boxes_pred = tf_format_to_abs(good_boxes_pred, P.target_size)
# filter boxes
logger('-%6d- BOXES [%4d] DataTime [%4.2fs] GPUTime [%4.2fs] StatsTime [%4.2fs] -EVAL-' %
(i, good_boxes_pred.shape[0], pipe_timer.average(), tf_op_timer.average(), stats_timer.average()))
if build_phocs:
# NOTICE: For PHOCs, only single batch eval is supported
box_viz_img = st.update_phoc_stats(meta_images=batch['meta_image'], doc_images=original_image, pred_boxes=abs_good_boxes_pred,
pred_phocs=res['good_phocs'], gt_boxes=batch['gt_boxes'], save_path=save_path)
else:
box_viz_img = st.update_segmentation_stats(meta_images=batch['meta_image'], doc_images=original_image, gt_boxes=batch['gt_boxes'],
pred_boxes=abs_good_boxes_pred, params=P, save_path=save_path,
test_phase=not train_mode, viz=True)
if box_viz_img is not None:
feed_dict.update({network.inputs.box_viz_images: box_viz_img})
else:
rboxes = res.get('random_boxes')
rlabels = res.get('random_iou_labels', np.array([P.box_filter_num_clsses - 1]*rboxes.shape[0]))
rboxes = tf_format_to_abs(rboxes, P.target_size)
box_viz_img_tensor = st.train_viz(batch, rboxes, rlabels, phoc_lab_thresh=3, unnormalize=NORMALIZE)
if box_viz_img_tensor is not None:
feed_dict.update({network.inputs.box_viz_images: box_viz_img_tensor})
# Do another pass to log newly create visualizations to TensorBoard
summary_protobuf, gs = sess.run([summary_op, global_step], feed_dict)
tb_writer.real.add_summary(summary_protobuf, global_step=gs)
# Save steps
if i % save_steps == 0 and train_mode:
network.models.save(sess, global_step)
stats_timer.toc()
# Won't be prefixed, saved as 'model'
if train_mode and len(runners) > 0:
network.models.save(sess, global_step)
# statistics.final_stats()
logger.close()
def experiment_setup(base_dir, args, passed_params=None):
""" Setting-up experiment"""
if passed_params is not None and not isinstance(passed_params, dict):
raise AttributeError('passed_params must be a dictionary')
os.environ['CUDA_VISIBLE_DEVICES'] = "%d" % args.gpu_id
# TODO: move this to be with the rest of arguments defenitions
# NOTICE: by default we support 5 or 2 classes of IoU boxes.
# In-case you wish to use other class number you should carefully consider:
# (1) Number of boxes per class you wish to generate during training
# (2) Lower IoU bound for box proposal classes definition
box_filter_num_clsses = args.box_filter_num_clsses
iou_cls_lower_bound = (0.35 if box_filter_num_clsses == 5 else 0.2) if args.iou_cls_lower_bound is None else args.iou_cls_lower_bound
boxes_per_class = [50, 50, 100, 100, 100] if box_filter_num_clsses == 5 else [250, 150]
passed_params = {'boxes_per_class': boxes_per_class, 'iou_cls_lower_bound':iou_cls_lower_bound} if passed_params is None else passed_params
logger = utils.Logger(log_dir=base_dir)
passed_params = settings.write_params_to_args(params=passed_params, args=args, override=False)
settings.log_params(logger, passed_params, None)
logger.close()
it = settings.get_dataset_loader(passed_params)
run(train_iterator=it,
train_iters=args.iters,
P=passed_params,
experiment_dir=base_dir,
train_mode=not args.eval_run,
segmentation_free=args.segment_free,
log_steps=args.log_steps,
save_steps=args.save_steps,
)
if __name__ == '__main__':
import os, time
from pathlib2 import Path
from settings.options import BoxSegmentWithPHOCOptions
args = BoxSegmentWithPHOCOptions().parse()
base_dir = Path(args.experiment_dir) / args.name
if not base_dir.exists():
base_dir.mkdir(parents=True)
print ('model will be loaded from %s' % str(base_dir))
print(os.getcwd())
time.sleep(1)
experiment_setup(str(base_dir), args, passed_params=None)