forked from FangShancheng/ABINet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
246 lines (218 loc) · 10.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import argparse
import logging
import os
import random
import torch
from fastai.callbacks.general_sched import GeneralScheduler, TrainingPhase
from fastai.distributed import *
from fastai.vision import *
from torch.backends import cudnn
from callbacks import DumpPrediction, IterationCallback, TextAccuracy, TopKTextAccuracy
from dataset import ImageDataset, TextDataset
from losses import MultiLosses
from utils import Config, Logger, MyDataParallel, MyConcatDataset
def _set_random_seed(seed):
if seed is not None:
random.seed(seed)
torch.manual_seed(seed)
cudnn.deterministic = True
logging.warning('You have chosen to seed training. '
'This will slow down your training!')
def _get_training_phases(config, n):
lr = np.array(config.optimizer_lr)
periods = config.optimizer_scheduler_periods
sigma = [config.optimizer_scheduler_gamma ** i for i in range(len(periods))]
phases = [TrainingPhase(n * periods[i]).schedule_hp('lr', lr * sigma[i])
for i in range(len(periods))]
return phases
def _get_dataset(ds_type, paths, is_training, config, **kwargs):
kwargs.update({
'img_h': config.dataset_image_height,
'img_w': config.dataset_image_width,
'max_length': config.dataset_max_length,
'case_sensitive': config.dataset_case_sensitive,
'charset_path': config.dataset_charset_path,
'data_aug': config.dataset_data_aug,
'deteriorate_ratio': config.dataset_deteriorate_ratio,
'is_training': is_training,
'multiscales': config.dataset_multiscales,
'one_hot_y': config.dataset_one_hot_y,
})
datasets = [ds_type(p, **kwargs) for p in paths]
if len(datasets) > 1: return MyConcatDataset(datasets)
else: return datasets[0]
def _get_language_databaunch(config):
kwargs = {
'max_length': config.dataset_max_length,
'case_sensitive': config.dataset_case_sensitive,
'charset_path': config.dataset_charset_path,
'smooth_label': config.dataset_smooth_label,
'smooth_factor': config.dataset_smooth_factor,
'one_hot_y': config.dataset_one_hot_y,
'use_sm': config.dataset_use_sm,
}
train_ds = TextDataset(config.dataset_train_roots[0], is_training=True, **kwargs)
valid_ds = TextDataset(config.dataset_test_roots[0], is_training=False, **kwargs)
data = DataBunch.create(
path=train_ds.path,
train_ds=train_ds,
valid_ds=valid_ds,
bs=config.dataset_train_batch_size,
val_bs=config.dataset_test_batch_size,
num_workers=config.dataset_num_workers,
pin_memory=config.dataset_pin_memory)
logging.info(f'{len(data.train_ds)} training items found.')
if not data.empty_val:
logging.info(f'{len(data.valid_ds)} valid items found.')
return data
def _get_databaunch(config):
# An awkward way to reduce loadding data time during test
if config.global_phase == 'test': config.dataset_train_roots = config.dataset_test_roots
train_ds = _get_dataset(ImageDataset, config.dataset_train_roots, True, config)
valid_ds = _get_dataset(ImageDataset, config.dataset_test_roots, False, config)
data = ImageDataBunch.create(
train_ds=train_ds,
valid_ds=valid_ds,
bs=config.dataset_train_batch_size,
val_bs=config.dataset_test_batch_size,
num_workers=config.dataset_num_workers,
pin_memory=config.dataset_pin_memory).normalize(imagenet_stats)
ar_tfm = lambda x: ((x[0], x[1]), x[1]) # auto-regression only for dtd
data.add_tfm(ar_tfm)
logging.info(f'{len(data.train_ds)} training items found.')
if not data.empty_val:
logging.info(f'{len(data.valid_ds)} valid items found.')
return data
def _get_model(config):
import importlib
names = config.model_name.split('.')
module_name, class_name = '.'.join(names[:-1]), names[-1]
cls = getattr(importlib.import_module(module_name), class_name)
model = cls(config)
logging.info(model)
return model
def _get_learner(config, data, model, local_rank=None):
strict = ifnone(config.model_strict, True)
if config.global_stage == 'pretrain-language':
metrics = [TopKTextAccuracy(
k=ifnone(config.model_k, 5),
charset_path=config.dataset_charset_path,
max_length=config.dataset_max_length + 1,
case_sensitive=config.dataset_eval_case_sensisitves,
model_eval=config.model_eval)]
else:
metrics = [TextAccuracy(
charset_path=config.dataset_charset_path,
max_length=config.dataset_max_length + 1,
case_sensitive=config.dataset_eval_case_sensisitves,
model_eval=config.model_eval)]
opt_type = getattr(torch.optim, config.optimizer_type)
learner = Learner(data, model, silent=True, model_dir='.',
true_wd=config.optimizer_true_wd,
wd=config.optimizer_wd,
bn_wd=config.optimizer_bn_wd,
path=config.global_workdir,
metrics=metrics,
opt_func=partial(opt_type, **config.optimizer_args or dict()),
loss_func=MultiLosses(one_hot=config.dataset_one_hot_y))
learner.split(lambda m: children(m))
if config.global_phase == 'train':
num_replicas = 1 if local_rank is None else torch.distributed.get_world_size()
phases = _get_training_phases(config, len(learner.data.train_dl)//num_replicas)
learner.callback_fns += [
partial(GeneralScheduler, phases=phases),
partial(GradientClipping, clip=config.optimizer_clip_grad),
partial(IterationCallback, name=config.global_name,
show_iters=config.training_show_iters,
eval_iters=config.training_eval_iters,
save_iters=config.training_save_iters,
start_iters=config.training_start_iters,
stats_iters=config.training_stats_iters)]
else:
learner.callbacks += [
DumpPrediction(learn=learner,
dataset='-'.join([Path(p).name for p in config.dataset_test_roots]),charset_path=config.dataset_charset_path,
model_eval=config.model_eval,
debug=config.global_debug,
image_only=config.global_image_only)]
learner.rank = local_rank
if local_rank is not None:
logging.info(f'Set model to distributed with rank {local_rank}.')
learner.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(learner.model)
learner.model.to(local_rank)
learner = learner.to_distributed(local_rank)
if torch.cuda.device_count() > 1 and local_rank is None:
logging.info(f'Use {torch.cuda.device_count()} GPUs.')
learner.model = MyDataParallel(learner.model)
if config.model_checkpoint:
if Path(config.model_checkpoint).exists():
with open(config.model_checkpoint, 'rb') as f:
buffer = io.BytesIO(f.read())
learner.load(buffer, strict=strict)
else:
from distutils.dir_util import copy_tree
src = Path('/data/fangsc/model')/config.global_name
trg = Path('/output')/config.global_name
if src.exists(): copy_tree(str(src), str(trg))
learner.load(config.model_checkpoint, strict=strict)
logging.info(f'Read model from {config.model_checkpoint}')
elif config.global_phase == 'test':
learner.load(f'best-{config.global_name}', strict=strict)
logging.info(f'Read model from best-{config.global_name}')
if learner.opt_func.func.__name__ == 'Adadelta': # fastai bug, fix after 1.0.60
learner.fit(epochs=0, lr=config.optimizer_lr)
learner.opt.mom = 0.
return learner
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True,
help='path to config file')
parser.add_argument('--phase', type=str, default=None, choices=['train', 'test'])
parser.add_argument('--name', type=str, default=None)
parser.add_argument('--checkpoint', type=str, default=None)
parser.add_argument('--test_root', type=str, default=None)
parser.add_argument("--local_rank", type=int, default=None)
parser.add_argument('--debug', action='store_true', default=None)
parser.add_argument('--image_only', action='store_true', default=None)
parser.add_argument('--model_strict', action='store_false', default=None)
parser.add_argument('--model_eval', type=str, default=None,
choices=['alignment', 'vision', 'language'])
args = parser.parse_args()
config = Config(args.config)
if args.name is not None: config.global_name = args.name
if args.phase is not None: config.global_phase = args.phase
if args.test_root is not None: config.dataset_test_roots = [args.test_root]
if args.checkpoint is not None: config.model_checkpoint = args.checkpoint
if args.debug is not None: config.global_debug = args.debug
if args.image_only is not None: config.global_image_only = args.image_only
if args.model_eval is not None: config.model_eval = args.model_eval
if args.model_strict is not None: config.model_strict = args.model_strict
Logger.init(config.global_workdir, config.global_name, config.global_phase)
Logger.enable_file()
_set_random_seed(config.global_seed)
logging.info(config)
if args.local_rank is not None:
logging.info(f'Init distribution training at device {args.local_rank}.')
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
logging.info('Construct dataset.')
if config.global_stage == 'pretrain-language': data = _get_language_databaunch(config)
else: data = _get_databaunch(config)
logging.info('Construct model.')
model = _get_model(config)
logging.info('Construct learner.')
learner = _get_learner(config, data, model, args.local_rank)
if config.global_phase == 'train':
logging.info('Start training.')
learner.fit(epochs=config.training_epochs,
lr=config.optimizer_lr)
else:
logging.info('Start validate')
last_metrics = learner.validate()
log_str = f'eval loss = {last_metrics[0]:6.3f}, ' \
f'ccr = {last_metrics[1]:6.3f}, cwr = {last_metrics[2]:6.3f}, ' \
f'ted = {last_metrics[3]:6.3f}, ned = {last_metrics[4]:6.0f}, ' \
f'ted/w = {last_metrics[5]:6.3f}, '
logging.info(log_str)
if __name__ == '__main__':
main()