forked from ggerganov/ggml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main-batched.cpp
1225 lines (956 loc) · 41.1 KB
/
main-batched.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "ggml/ggml.h"
#include "ggml/ggml-alloc.h"
#include "ggml/ggml-backend.h"
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#include "common.h"
#include "common-ggml.h"
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <set>
#include <string>
#include <vector>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#define GPT2_MAX_NODES 4096
static void ggml_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) user_data;
fputs(text, stderr);
fflush(stderr);
}
typedef int32_t gpt2_pos;
typedef int32_t gpt2_seq_id;
// default hparams (GPT-2 117M)
struct gpt2_hparams {
int32_t n_vocab = 50257;
int32_t n_ctx = 1024;
int32_t n_embd = 768;
int32_t n_head = 12;
int32_t n_layer = 12;
int32_t ftype = 1;
float eps = 1e-5f;
};
struct gpt2_layer {
// normalization
struct ggml_tensor * ln_1_g;
struct ggml_tensor * ln_1_b;
struct ggml_tensor * ln_2_g;
struct ggml_tensor * ln_2_b;
// attention
struct ggml_tensor * c_attn_attn_w;
struct ggml_tensor * c_attn_attn_b;
struct ggml_tensor * c_attn_proj_w;
struct ggml_tensor * c_attn_proj_b;
// mlp
struct ggml_tensor * c_mlp_fc_w;
struct ggml_tensor * c_mlp_fc_b;
struct ggml_tensor * c_mlp_proj_w;
struct ggml_tensor * c_mlp_proj_b;
};
struct gpt2_kv_cell {
gpt2_pos pos = -1;
gpt2_pos delta = 0;
std::set<gpt2_seq_id> seq_id;
bool has_seq_id(const gpt2_seq_id & id) const {
return seq_id.find(id) != seq_id.end();
}
};
struct gpt2_kv_cache {
// key + value memory
struct ggml_tensor * k;
struct ggml_tensor * v;
//
uint32_t head = 0;
uint32_t size = 0;
// computed before each graph build
uint32_t n = 0;
std::vector<gpt2_kv_cell> cells;
ggml_backend_buffer_t buffer;
};
struct gpt2_model {
gpt2_hparams hparams;
// normalization
struct ggml_tensor * ln_f_g;
struct ggml_tensor * ln_f_b;
struct ggml_tensor * wte; // position embedding
struct ggml_tensor * wpe; // token embedding
struct ggml_tensor * lm_head; // language model head
std::vector<gpt2_layer> layers;
gpt2_kv_cache kv_cache;
struct ggml_context * ctx;
ggml_backend_t backend = NULL;
ggml_backend_buffer_t buffer_w;
std::map<std::string, struct ggml_tensor *> tensors;
};
// Input data for gpt2_decode
// A gpt2_batch object can contain input about one or many sequences
// The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
//
// - token : the token ids of the input (used when embd is NULL)
// - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
// - pos : the positions of the respective token in the sequence
// - seq_id : the sequence to which the respective token belongs
// - logits : if zero, the logits for the respective token will not be output
//
struct gpt2_batch {
int32_t n_tokens = -1;
gpt_vocab::id * token = {};
float * embd = {};
gpt2_pos * pos = {};
gpt2_seq_id * seq_id = {};
int8_t * logits = {};
};
// load the model's weights from a file
bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab & vocab, int n_ctx, int n_gpu_layers) {
printf("%s: loading model from '%s'\n", __func__, fname.c_str());
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
return false;
}
// verify magic
{
uint32_t magic;
fin.read((char *) &magic, sizeof(magic));
if (magic != GGML_FILE_MAGIC) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
return false;
}
}
// load hparams
{
auto & hparams = model.hparams;
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
printf("%s: n_head = %d\n", __func__, hparams.n_head);
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
printf("%s: ftype = %d\n", __func__, hparams.ftype);
printf("%s: qntvr = %d\n", __func__, qntvr);
hparams.ftype %= GGML_QNT_VERSION_FACTOR;
}
// load vocab
{
int32_t n_vocab = 0;
fin.read((char *) &n_vocab, sizeof(n_vocab));
if (n_vocab != model.hparams.n_vocab) {
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
__func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
return false;
}
std::string word;
std::vector<char> buf(128);
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
buf.resize(len);
fin.read((char *) buf.data(), len);
word.assign(buf.data(), len);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
}
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
// in order to save memory and also to speed up the computation
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
if (wtype == GGML_TYPE_COUNT) {
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
__func__, fname.c_str(), model.hparams.ftype);
return false;
}
auto & ctx = model.ctx;
size_t buffer_size = 0;
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;
buffer_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g
buffer_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b
buffer_size += n_vocab*n_embd*ggml_type_sizef(wtype); // wte
buffer_size += n_ctx*n_embd*ggml_type_sizef(GGML_TYPE_F32); // wpe
buffer_size += n_vocab*n_embd*ggml_type_sizef(wtype); // lm_head
buffer_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g
buffer_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b
buffer_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_g
buffer_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_b
buffer_size += n_layer*(3*n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_attn_w
buffer_size += n_layer*( 3*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_attn_b
buffer_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w
buffer_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_proj_b
buffer_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w
buffer_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b
buffer_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w
buffer_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b
buffer_size += (6 + 12*n_layer)*128; // alignment overhead
printf("%s: ggml tensor size = %d bytes\n", __func__, (int) sizeof(ggml_tensor));
printf("%s: backend buffer size = %6.2f MB\n", __func__, buffer_size/(1024.0*1024.0));
}
// create the ggml context
{
size_t n_tensors = 2 + 6 + 12*model.hparams.n_layer;
struct ggml_init_params params = {
/*.mem_size =*/ ggml_tensor_overhead() * n_tensors,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
model.ctx = ggml_init(params);
if (!model.ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// initialize the backend
#ifdef GGML_USE_CUBLAS
if (n_gpu_layers > 0) {
fprintf(stderr, "%s: using CUDA backend\n", __func__);
model.backend = ggml_backend_cuda_init(0);
if (!model.backend) {
fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
}
}
#endif
#ifdef GGML_USE_METAL
if (n_gpu_layers > 0) {
fprintf(stderr, "%s: using Metal backend\n", __func__);
ggml_metal_log_set_callback(ggml_log_callback_default, nullptr);
model.backend = ggml_backend_metal_init();
if (!model.backend) {
fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
}
}
#endif
if (!model.backend) {
// fallback to CPU backend
fprintf(stderr, "%s: using CPU backend\n", __func__);
model.backend = ggml_backend_cpu_init();
}
if (!model.backend) {
fprintf(stderr, "%s: ggml_backend_cpu_init() failed\n", __func__);
return false;
}
// allocate weights buffer
model.buffer_w = ggml_backend_alloc_buffer(model.backend, buffer_size);
// prepare memory for the weights
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;
model.layers.resize(n_layer);
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);
model.lm_head = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
// map by name
model.tensors["model/ln_f/g"] = model.ln_f_g;
model.tensors["model/ln_f/b"] = model.ln_f_b;
model.tensors["model/wte"] = model.wte;
model.tensors["model/wpe"] = model.wpe;
model.tensors["model/lm_head"] = model.lm_head;
for (int i = 0; i < n_layer; ++i) {
auto & layer = model.layers[i];
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 3*n_embd);
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd);
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd);
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
// map by name
model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g;
model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b;
model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g;
model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b;
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w;
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b;
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w;
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b;
}
}
// override the default training context with the user-provided
model.hparams.n_ctx = n_ctx;
// key + value memory
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_mem = n_layer*n_ctx;
const int n_elements = n_embd*n_mem;
model.kv_cache.k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
model.kv_cache.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
model.kv_cache.head = 0;
model.kv_cache.size = n_ctx;
model.kv_cache.cells.resize(n_ctx);
const size_t memory_size = ggml_nbytes(model.kv_cache.k) + ggml_nbytes(model.kv_cache.v);
printf("%s: memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
// create a backend buffer (can be in host or device memory)
model.kv_cache.buffer = ggml_backend_alloc_buffer(model.backend, memory_size + 256);
// allocate the tensors into the backend buffer
{
ggml_allocr * alloc = ggml_allocr_new_from_buffer(model.kv_cache.buffer);
// this updates the pointers in the tensors to point to the correct location in the buffer
// this is necessary since the ggml_context is .no_alloc == true
// note that the buffer can actually be a device buffer, depending on the backend
ggml_allocr_alloc(alloc, model.kv_cache.k);
ggml_allocr_alloc(alloc, model.kv_cache.v);
ggml_allocr_free(alloc);
}
}
// load weights
{
ggml_allocr * alloc = ggml_allocr_new_from_buffer(model.buffer_w);
size_t total_size = 0;
bool has_lm_head = false;
std::vector<char> read_buf;
while (true) {
int32_t n_dims;
int32_t length;
int32_t ttype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
if (fin.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
if (model.tensors.find(name) == model.tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.c_str());
return false;
}
auto tensor = model.tensors[name];
ggml_set_name(tensor, name.c_str());
if (ggml_nelements(tensor) != nelements) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.c_str());
return false;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
__func__, name.c_str(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
return false;
}
// for debugging
if (0) {
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
}
const size_t bpe = ggml_type_size(ggml_type(ttype));
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
__func__, name.c_str(), ggml_nbytes(tensor), nelements*bpe);
return false;
}
ggml_allocr_alloc(alloc, tensor);
if (ggml_backend_is_cpu (model.backend)
#ifdef GGML_USE_METAL
|| ggml_backend_is_metal(model.backend)
#endif
) {
// for the CPU and Metal backend, we can read directly into the tensor
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
} else {
// read into a temporary buffer first, then copy to device memory
read_buf.resize(ggml_nbytes(tensor));
fin.read(read_buf.data(), ggml_nbytes(tensor));
ggml_backend_tensor_set(tensor, read_buf.data(), 0, ggml_nbytes(tensor));
}
// GPT-2 models share the WTE tensor as the LM head
if (name == "model/wte" && has_lm_head == false) {
//ggml_allocr_alloc(alloc, model.lm_head);
//ggml_backend_tensor_copy(tensor, model.lm_head);
model.lm_head = tensor;
}
if (name == "model/lm_head") {
has_lm_head = true;
}
total_size += ggml_nbytes(tensor);
}
ggml_allocr_free(alloc);
printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
}
fin.close();
return true;
}
// build the computation graph
struct ggml_cgraph * gpt2_graph(
const gpt2_model & model,
struct ggml_allocr * allocr,
const gpt2_batch & batch) {
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_head = hparams.n_head;
const auto & kv_cache = model.kv_cache;
const int32_t n_tokens = batch.n_tokens;
const int32_t n_kv = ggml_allocr_is_measure(allocr) ? n_ctx : kv_cache.n;
const int32_t kv_head = ggml_allocr_is_measure(allocr) ? n_ctx - n_tokens : kv_cache.head;
// since we are using ggml-alloc, this buffer only needs enough space to hold the ggml_tensor and ggml_cgraph structs, but not the tensor data
static size_t buf_size = ggml_tensor_overhead()*GPT2_MAX_NODES + ggml_graph_overhead_custom(GPT2_MAX_NODES, false);
static std::vector<uint8_t> buf(buf_size);
struct ggml_init_params params = {
/*.mem_size =*/ buf_size,
/*.mem_buffer =*/ buf.data(),
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph()
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, GPT2_MAX_NODES, false);
struct ggml_tensor * inpL;
if (batch.token) {
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
ggml_allocr_alloc(allocr, inp_tokens);
if (!ggml_allocr_is_measure(allocr)) {
ggml_backend_tensor_set(inp_tokens, batch.token, 0, n_tokens*ggml_element_size(inp_tokens));
}
struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
ggml_allocr_alloc(allocr, position);
if (!ggml_allocr_is_measure(allocr)) {
for (int i = 0; i < n_tokens; ++i) {
int32_t v = batch.pos[i];
ggml_backend_tensor_set(position, &v, i*sizeof(int32_t), sizeof(v));
}
}
// wte + wpe
inpL =
ggml_add(ctx0,
ggml_get_rows(ctx0, model.wte, inp_tokens),
ggml_get_rows(ctx0, model.wpe, position));
} else {
GGML_ASSERT(batch.embd);
inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
ggml_allocr_alloc(allocr, inpL);
if (!ggml_allocr_is_measure(allocr)) {
ggml_backend_tensor_set(inpL, batch.embd, 0, n_tokens * n_embd * ggml_element_size(inpL));
}
}
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
ggml_allocr_alloc(allocr, KQ_scale);
if (!ggml_allocr_is_measure(allocr)) {
float s = 1.0f/sqrtf(float(n_embd)/n_head);
ggml_backend_tensor_set(KQ_scale, &s, 0, sizeof(s));
}
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
ggml_set_name(KQ_mask, "KQ_mask");
ggml_allocr_alloc(allocr, KQ_mask);
if (!ggml_allocr_is_measure(allocr)) {
std::vector<float> data_buf(n_kv*n_tokens);
const float neg_inf_v = -INFINITY;
for (int h = 0; h < 1; ++h) {
int h_offset = h*(n_kv*n_tokens);
for (int j = 0; j < n_tokens; ++j) {
const gpt2_pos pos = batch.pos[j];
const gpt2_seq_id seq_id = batch.seq_id[j];
for (int i = 0; i < n_kv; ++i) {
if (!kv_cache.cells[i].has_seq_id(seq_id) || kv_cache.cells[i].pos > pos) {
data_buf[h_offset + j*n_kv + i] = neg_inf_v;
}
}
}
}
ggml_backend_tensor_set(KQ_mask, data_buf.data(), 0, data_buf.size() * sizeof(float));
}
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * cur;
// norm
{
// [ 768, N]
cur = ggml_norm(ctx0, inpL, hparams.eps);
// cur = ln_1_g*cur + ln_1_b
// [ 768, N]
cur = ggml_add(ctx0,
ggml_mul(ctx0,
cur,
model.layers[il].ln_1_g),
model.layers[il].ln_1_b);
}
// attn
// [2304, 768] - model.layers[il].c_attn_attn_w
// [2304, 1] - model.layers[il].c_attn_attn_b
// [ 768, n_tokens] - cur (in)
// [2304, n_tokens] - cur (out)
//
// cur = attn_w*cur + attn_b
// [2304, n_tokens]
{
cur = ggml_mul_mat(ctx0,
model.layers[il].c_attn_attn_w,
cur);
cur = ggml_add(ctx0,
cur,
model.layers[il].c_attn_attn_b);
}
// self-attention
{
struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*n_embd);
struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*n_embd);
struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*n_embd);
// store key and value to memory
if (n_tokens >= 1) {
struct ggml_tensor * k = ggml_view_1d(ctx0, model.kv_cache.k, n_tokens*n_embd, (ggml_element_size(model.kv_cache.k)*n_embd)*(il*n_ctx + kv_head));
struct ggml_tensor * v = ggml_view_1d(ctx0, model.kv_cache.v, n_tokens*n_embd, (ggml_element_size(model.kv_cache.v)*n_embd)*(il*n_ctx + kv_head));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
}
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
// [64, N, 12]
struct ggml_tensor * Q =
ggml_permute(ctx0,
ggml_cpy(ctx0,
Qcur,
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, n_tokens)),
0, 2, 1, 3);
// K = Kmem.view(n_embd/n_head, n_head, n_kv).permute(0, 2, 1, 3)
// [64, n_kv, 12]
struct ggml_tensor * K =
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.kv_cache.k, n_kv*n_embd, il*n_ctx*ggml_element_size(model.kv_cache.k)*n_embd),
n_embd/n_head, n_head, n_kv),
0, 2, 1, 3);
// GG: flash attention
//struct ggml_tensor * V =
// ggml_cpy(ctx0,
// ggml_permute(ctx0,
// ggml_reshape_3d(ctx0,
// ggml_view_1d(ctx0, model.kv_cache.v, n_kv*n_embd, il*n_ctx*ggml_element_size(model.kv_cache.v)*n_embd),
// n_embd/n_head, n_head, n_kv),
// 1, 2, 0, 3),
// ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_embd/n_head, n_head));
//struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, true);
// K * Q
// [n_kv, n_tokens, 12]
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
// KQ_scaled = KQ / sqrt(n_embd/n_head)
// [n_kv, n_tokens, 12]
struct ggml_tensor * KQ_scaled =
ggml_scale(ctx0,
KQ,
KQ_scale);
// KQ_masked = mask_past(KQ_scaled)
// [n_kv, n_tokens, 12]
struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
// KQ = soft_max(KQ_masked)
// [n_kv, N, 12]
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
// V_trans = Vmem.view(n_embd/n_head, n_head, n_kv).permute(1, 2, 0, 3).contiguous()
// [n_kv, 64, 12]
struct ggml_tensor * V_trans =
ggml_cpy(ctx0,
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.kv_cache.v, n_kv*n_embd, il*n_ctx*ggml_element_size(model.kv_cache.v)*n_embd),
n_embd/n_head, n_head, n_kv),
1, 2, 0, 3),
ggml_new_tensor_3d(ctx0, model.kv_cache.v->type, n_kv, n_embd/n_head, n_head));
// KQV = transpose(V) * KQ_soft_max
// [64, n_tokens, 12]
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
// KQV_merged = KQV.permute(0, 2, 1, 3)
// [64, 12, n_tokens]
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
// cur = KQV_merged.contiguous().view(n_embd, N)
// [768, n_tokens]
cur = ggml_cpy(ctx0,
KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens));
}
// projection
// [ 768, 768] - model.layers[il].c_attn_proj_w
// [ 768, 1] - model.layers[il].c_attn_proj_b
// [ 768, N] - cur (in)
// [ 768, N] - cur (out)
//
// cur = proj_w*cur + proj_b
// [768, N]
{
cur = ggml_mul_mat(ctx0,
model.layers[il].c_attn_proj_w,
cur);
cur = ggml_add(ctx0,
cur,
model.layers[il].c_attn_proj_b);
}
// add the input
cur = ggml_add(ctx0, cur, inpL);
struct ggml_tensor * inpFF = cur;
// feed-forward network
{
// norm
{
cur = ggml_norm(ctx0, inpFF, hparams.eps);
// cur = ln_2_g*cur + ln_2_b
// [ 768, N]
cur = ggml_add(ctx0,
ggml_mul(ctx0,
cur,
model.layers[il].ln_2_g),
model.layers[il].ln_2_b);
}
// fully connected
// [3072, 768] - model.layers[il].c_mlp_fc_w
// [3072, 1] - model.layers[il].c_mlp_fc_b
// [ 768, N] - cur (in)
// [3072, N] - cur (out)
//
// cur = fc_w*cur + fc_b
// [3072, N]
cur = ggml_mul_mat(ctx0,
model.layers[il].c_mlp_fc_w,
cur);
cur = ggml_add(ctx0,
cur,
model.layers[il].c_mlp_fc_b);
// GELU activation
// [3072, N]
cur = ggml_gelu(ctx0, cur);
// projection
// [ 768, 3072] - model.layers[il].c_mlp_proj_w
// [ 768, 1] - model.layers[il].c_mlp_proj_b
// [3072, N] - cur (in)
// [ 768, N] - cur (out)
//
// cur = proj_w*cur + proj_b
// [768, N]
cur = ggml_mul_mat(ctx0,
model.layers[il].c_mlp_proj_w,
cur);
cur = ggml_add(ctx0,
cur,
model.layers[il].c_mlp_proj_b);
}
// input for next layer
inpL = ggml_add(ctx0, cur, inpFF);
}
// norm
{
// [ 768, N]
inpL = ggml_norm(ctx0, inpL, hparams.eps);
// inpL = ln_f_g*inpL + ln_f_b
// [ 768, N]
inpL = ggml_add(ctx0,
ggml_mul(ctx0,
inpL,
model.ln_f_g),
model.ln_f_b);
}
// inpL = WTE * inpL
// [ 768, 50257] - model.lm_head
// [ 768, N] - inpL
inpL = ggml_mul_mat(ctx0, model.lm_head, inpL);
// logits -> probs
//inpL = ggml_soft_max(ctx0, inpL);
ggml_build_forward_expand(gf, inpL);
ggml_free(ctx0);
return gf;
}
static void gpt2_kv_cache_seq_cp(
struct gpt2_kv_cache & cache,
gpt2_seq_id seq_id_src,
gpt2_seq_id seq_id_dst,
gpt2_pos p0,
gpt2_pos p1) {
if (p0 < 0) p0 = 0;
if (p1 < 0) p1 = std::numeric_limits<gpt2_pos>::max();
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
cache.cells[i].seq_id.insert(seq_id_dst);
}
}
}
struct gpt2_batch gpt2_batch_init(int32_t n_tokens, int32_t embd) {
gpt2_batch batch;
if (embd) {
batch.embd = (float *) malloc(sizeof(float) * n_tokens * embd);
} else {
batch.token = (gpt_vocab::id *) malloc(sizeof(gpt_vocab::id) * n_tokens);
}
batch.pos = (gpt2_pos *) malloc(sizeof(gpt2_pos) * n_tokens);
batch.seq_id = (gpt2_seq_id *) malloc(sizeof(gpt2_seq_id) * n_tokens);
batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens);
return batch;
}
void gpt2_batch_free(struct gpt2_batch batch) {
if (batch.token) free(batch.token);
if (batch.embd) free(batch.embd);
if (batch.pos) free(batch.pos);
if (batch.seq_id) free(batch.seq_id);
if (batch.logits) free(batch.logits);
}
// Positive return values does not mean a fatal error, but rather a warning.
// 0 - success
// < 0 - error
int gpt2_decode(
struct gpt2_model & model,
struct ggml_allocr * allocr,
struct gpt2_batch batch,
int n_threads,
std::vector<float> & logits) {
const int32_t n_tokens = batch.n_tokens;
const auto & hparams = model.hparams;
const int n_vocab = hparams.n_vocab;
if (n_tokens == 0) {
printf("%s: n_tokens == 0", __func__);
return -1;
}
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd));
auto & cache = model.kv_cache;
for (int i = 0; i < n_tokens; i++) {
cache.cells[cache.head + i].pos = batch.pos[i];
cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i]);
}
cache.n = cache.head + n_tokens;
// reset the allocator to free all the memory allocated during the previous inference
ggml_allocr_reset(allocr);
struct ggml_cgraph * gf = gpt2_graph(model, allocr, batch);
// allocate tensors
ggml_allocr_alloc_graph(allocr, gf);
// run the computation
if (ggml_backend_is_cpu(model.backend)) {
ggml_backend_cpu_set_n_threads(model.backend, n_threads);
}
#ifdef GGML_USE_METAL
if (ggml_backend_is_metal(model.backend)) {
ggml_backend_metal_set_n_cb(model.backend, n_threads);
}
#endif
ggml_backend_graph_compute(model.backend, gf);
//if (n_past%100 == 0) {
// ggml_graph_print (&gf);
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
//}
// in this case, the output tensor is the last one in the graph
struct ggml_tensor * inpL = gf->nodes[gf->n_nodes - 1];
if (batch.logits) {
// return logits for all tokens
logits.resize(n_vocab*n_tokens);
for (int32_t i = 0; i < n_tokens; i++) {
if (batch.logits[i] == 0) {
continue;
}
ggml_backend_tensor_get(inpL, logits.data() + n_vocab*i, n_vocab*i*sizeof(float), sizeof(float)*n_vocab);
}
} else {
// return result just for the last token
logits.resize(n_vocab);
ggml_backend_tensor_get(inpL, logits.data(), (n_vocab*(n_tokens-1))*sizeof(float), sizeof(float)*n_vocab);
}
// update the kv ring buffer
cache.head += n_tokens;
// ensure kv cache head points to a valid index.
if (cache.head >= cache.size) {
printf("%s: cache.head >= cache.size\n", __func__);
return -2;
}
return 0;
}
int main(int argc, char ** argv) {
ggml_time_init();
const int64_t t_main_start_us = ggml_time_us();
gpt_params params;
if (gpt_params_parse(argc, argv, params) == false) {
return 1;
}