-
Notifications
You must be signed in to change notification settings - Fork 0
/
parVOXELISE.m
673 lines (562 loc) · 33.2 KB
/
parVOXELISE.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
function [gridOUTPUT,varargout] = parVOXELISE(gridX,gridY,gridZ,varargin)
% VOXELISE Voxelise a 3D triangular-polygon mesh.
%==========================================================================
% AUTHOR Adam H. Aitkenhead
% CONTACT [email protected]
% INSTITUTION The Christie NHS Foundation Trust
%
% USAGE [gridOUTPUT,gridCOx,gridCOy,gridCOz] = VOXELISE(gridX,gridY,gridZ,STLin,raydirection)
% or... [gridOUTPUT,gridCOx,gridCOy,gridCOz] = VOXELISE(gridX,gridY,gridZ,meshFV,raydirection)
% or... [gridOUTPUT,gridCOx,gridCOy,gridCOz] = VOXELISE(gridX,gridY,gridZ,meshX,meshY,meshZ,raydirection)
% or... [gridOUTPUT,gridCOx,gridCOy,gridCOz] = VOXELISE(gridX,gridY,gridZ,meshXYZ,raydirection)
%
% INPUTS
%
% gridX - Mandatory - 1xP array - List of the grid X coordinates.
% OR an integer - Number of voxels in the grid in the X direction.
%
% gridY - Mandatory - 1xQ array - List of the grid Y coordinates.
% OR an integer - Number of voxels in the grid in the Y direction.
%
% gridZ - Mandatory - 1xR array - List of the grid Z coordinates.
% OR an integer - Number of voxels in the grid in the Z direction.
%
% STLin - Optional - string - Filename of the STL file.
%
% meshFV - Optional - structure - Structure containing the faces and vertices
% of the mesh, in the same format as that produced
% by the isosurface command.
%
% meshX - Optional - 3xN array - List of the mesh X coordinates for the 3 vertices of each of the N triangular patches
% meshY - Optional - 3xN array - List of the mesh Y coordinates for the 3 vertices of each of the N triangular patches
% meshZ - Optional - 3xN array - List of the mesh Z coordinates for the 3 vertices of each of the N triangular patches
%
% meshXYZ - Optional - Nx3x3 array - The vertex coordinates for each facet, with:
% 1 row for each facet
% 3 columns for the x,y,z coordinates
% 3 pages for the three vertices
%
% raydirection - Optional - String - Defines the directions in which ray-tracing
% is performed. The default is 'xyz', which
% traces in the x,y,z directions and combines
% the results.
%
% OUTPUTS
%
% gridOUTPUT - Mandatory - PxQxR logical array - Voxelised data (1=>Inside the mesh, 0=>Outside the mesh)
%
% gridCOx - Optional - 1xP array - List of the grid X coordinates.
% gridCOy - Optional - 1xQ array - List of the grid Y coordinates.
% gridCOz - Optional - 1xR array - List of the grid Z coordinates.
%
% EXAMPLES
%
% To voxelise an STL file:
% >> [gridOUTPUT] = VOXELISE(gridX,gridY,gridZ,STLin)
%
% To voxelise a mesh defined by a structure containing the faces and vertices:
% >> [gridOUTPUT] = VOXELISE(gridX,gridY,gridZ,meshFV)
%
% To voxelise a mesh where the x,y,z coordinates are defined by three 3xN arrays:
% >> [gridOUTPUT] = VOXELISE(gridX,gridY,gridZ,meshX,meshY,meshZ)
%
% To voxelise a mesh defined by a single Nx3x3 array:
% >> [gridOUTPUT] = VOXELISE(gridX,gridY,gridZ,meshXYZ)
%
% To also output the lists of X,Y,Z coordinates:
% >> [gridOUTPUT,gridCOx,gridCOy,gridCOz] = VOXELISE(gridX,gridY,gridZ,STLin)
%
% To use ray-tracing in only the z-direction:
% >> [gridOUTPUT] = VOXELISE(gridX,gridY,gridZ,STLin,'z')
%
% NOTES
%
% - The mesh must be properly closed (ie. watertight).
% - Defining raydirection='xyz' means that the mesh is ray-traced in each
% of the x,y,z directions, with the overall result being a combination
% of the result from each direction. This gives the most reliable
% result at the expense of computation time.
% - Tracing in only one direction (eg. raydirection='z') is faster, but
% can potentially lead to artefacts where a ray exactly crosses
% several facet edges.
%
% REFERENCES
%
% - This code uses a ray intersection method similar to that described by:
% Patil S and Ravi B. Voxel-based representation, display and
% thickness analysis of intricate shapes. Ninth International
% Conference on Computer Aided Design and Computer Graphics (CAD/CG
% 2005)
%==========================================================================
%==========================================================================
% VERSION USER CHANGES
% ------- ---- -------
% 100510 AHA Original version.
% 100514 AHA Now works with non-STL input. Changes also provide a
% significant speed improvement.
% 100520 AHA Now optionally output the grid x,y,z coordinates.
% Robustness also improved.
% 100614 AHA Define gridOUTPUT as a logical array to improve memory
% efficiency.
% 100615 AHA Reworked the ray interpolation code to correctly handle
% logical arrays.
% 100623 AHA Enable ray-tracing in any combination of the x,y,z
% directions.
% 100628 AHA Allow input to be a structure containing [faces,vertices]
% data, similar to the type of structure output by
% isosurface.
% 100907 AHA Now allow the grid to be smaller than the mesh dimensions.
% 101126 AHA Simplified code, slight speed improvement, more robust.
% Changed handling of automatic grid generation to reduce
% chance of artefacts.
% 101201 AHA Fixed bug in automatic grid generation.
% 110303 AHA Improved method of finding which mesh facets can possibly
% be crossed by each ray. Up to 80% reduction in run-time.
% 111104 AHA Housekeeping tidy-up.
% 130212 AHA Added checking of ray/vertex intersections, which reduces
% artefacts in situations where the mesh vertices are located
% directly on ray paths in the voxelisation grid.
%==========================================================================
%======================================================
% CHECK THE REQUIRED NUMBER OF OUTPUT PARAMETERS
%======================================================
if nargout~=1 && nargout~=4
error('Incorrect number of output arguments.')
end
%======================================================
% READ INPUT PARAMETERS
%======================================================
% Read the ray direction if defined by the user, and remove this from the
% list of input arguments. This makes it to make it easier to extract the
% mesh data from the input arguments in the subsequent step.
if ischar(varargin{end}) && max(strcmpi(varargin{end},{'x','y','z','xy','xz','yx','yz','zx','zy','xyz','xzy','yxz','yzx','zxy','zyx'}))
raydirection = lower(varargin{end});
varargin = varargin(1:nargin-4);
narginremaining = nargin-1;
else
raydirection = 'xyz'; %Set the default value if none is defined by the user
narginremaining = nargin;
end
% Whatever the input mesh format is, it is converted to an Nx3x3 array
% defining the vertex positions for each facet, with 1 row for each facet,
% 3 cols for the x,y,z coordinates, and 3 pages for the three vertices.
if narginremaining==4
if isstruct(varargin{1})==1
meshXYZ = CONVERT_meshformat(varargin{1}.faces,varargin{1}.vertices);
elseif ischar(varargin{1})
meshXYZ = READ_stl(varargin{1});
else
meshXYZ = varargin{1};
end
elseif narginremaining==6
meshX = varargin{1};
meshY = varargin{2};
meshZ = varargin{3};
meshXYZ = zeros( size(meshX,2) , 3 , size(meshX,1) );
meshXYZ(:,1,:) = reshape(meshX',size(meshX,2),1,3);
meshXYZ(:,2,:) = reshape(meshY',size(meshY,2),1,3);
meshXYZ(:,3,:) = reshape(meshZ',size(meshZ,2),1,3);
else
error('Incorrect number of input arguments.')
end
%======================================================
% IDENTIFY THE MIN AND MAX X,Y,Z COORDINATES OF THE POLYGON MESH
%======================================================
meshXmin = min(min(meshXYZ(:,1,:)));
meshXmax = max(max(meshXYZ(:,1,:)));
meshYmin = min(min(meshXYZ(:,2,:)));
meshYmax = max(max(meshXYZ(:,2,:)));
meshZmin = min(min(meshXYZ(:,3,:)));
meshZmax = max(max(meshXYZ(:,3,:)));
%======================================================
% CHECK THE DIMENSIONS OF THE 3D OUTPUT GRID
%======================================================
% The output grid will be defined by the coordinates in gridCOx, gridCOy, gridCOz
if numel(gridX)>1
if size(gridX,1)>size(gridX,2) %gridX should be a row vector rather than a column vector
gridCOx = gridX';
else
gridCOx = gridX;
end
elseif numel(gridX)==1 && gridX==1 %If gridX is a single integer (rather than a vector) and is equal to 1
gridCOx = (meshXmin+meshXmax)/2;
elseif numel(gridX)==1 && rem(gridX,1)==0 %If gridX is a single integer (rather than a vector) then automatically create the list of x coordinates
voxwidth = (meshXmax-meshXmin)/(gridX+1/2);
gridCOx = meshXmin+voxwidth/2 : voxwidth : meshXmax-voxwidth/2;
end
if numel(gridY)>1
if size(gridY,1)>size(gridY,2) %gridY should be a row vector rather than a column vector
gridCOy = gridY';
else
gridCOy = gridY;
end
elseif numel(gridY)==1 && gridY==1 %If gridX is a single integer (rather than a vector) and is equal to 1
gridCOy = (meshYmin+meshYmax)/2;
elseif numel(gridY)==1 && rem(gridY,1)==0 %If gridX is a single integer (rather than a vector) then automatically create the list of y coordinates
voxwidth = (meshYmax-meshYmin)/(gridY+1/2);
gridCOy = meshYmin+voxwidth/2 : voxwidth : meshYmax-voxwidth/2;
end
if numel(gridZ)>1
if size(gridZ,1)>size(gridZ,2) %gridZ should be a row vector rather than a column vector
gridCOz = gridZ';
else
gridCOz = gridZ;
end
elseif numel(gridZ)==1 && gridZ==1 %If gridX is a single integer (rather than a vector) and is equal to 1
gridCOz = (meshZmin+meshZmax)/2;
elseif numel(gridZ)==1 && rem(gridZ,1)==0 %If gridZ is a single integer (rather than a vector) then automatically create the list of z coordinates
voxwidth = (meshZmax-meshZmin)/(gridZ+1/2);
gridCOz = meshZmin+voxwidth/2 : voxwidth : meshZmax-voxwidth/2;
end
%Check that the output grid is large enough to cover the mesh:
if ~isempty(strfind(raydirection,'x')) && (min(gridCOx)>meshXmin || max(gridCOx)<meshXmax)
gridcheckX = 0;
if min(gridCOx)>meshXmin
gridCOx = [meshXmin,gridCOx];
gridcheckX = gridcheckX+1;
end
if max(gridCOx)<meshXmax
gridCOx = [gridCOx,meshXmax];
gridcheckX = gridcheckX+2;
end
elseif ~isempty(strfind(raydirection,'y')) && (min(gridCOy)>meshYmin || max(gridCOy)<meshYmax)
gridcheckY = 0;
if min(gridCOy)>meshYmin
gridCOy = [meshYmin,gridCOy];
gridcheckY = gridcheckY+1;
end
if max(gridCOy)<meshYmax
gridCOy = [gridCOy,meshYmax];
gridcheckY = gridcheckY+2;
end
elseif ~isempty(strfind(raydirection,'z')) && (min(gridCOz)>meshZmin || max(gridCOz)<meshZmax)
gridcheckZ = 0;
if min(gridCOz)>meshZmin
gridCOz = [meshZmin,gridCOz];
gridcheckZ = gridcheckZ+1;
end
if max(gridCOz)<meshZmax
gridCOz = [gridCOz,meshZmax];
gridcheckZ = gridcheckZ+2;
end
end
%======================================================
% VOXELISE USING THE USER DEFINED RAY DIRECTION(S)
%======================================================
%Count the number of voxels in each direction:
voxcountX = numel(gridCOx);
voxcountY = numel(gridCOy);
voxcountZ = numel(gridCOz);
% Prepare logical array to hold the voxelised data:
gridOUTPUT = false( voxcountX,voxcountY,voxcountZ,numel(raydirection) );
countdirections = 0;
if strfind(raydirection,'x')
countdirections = countdirections + 1;
gridOUTPUT(:,:,:,countdirections) = permute( VOXELISEinternal(gridCOy,gridCOz,gridCOx,meshXYZ(:,[2,3,1],:)) ,[3,1,2] );
end
if strfind(raydirection,'y')
countdirections = countdirections + 1;
gridOUTPUT(:,:,:,countdirections) = permute( VOXELISEinternal(gridCOz,gridCOx,gridCOy,meshXYZ(:,[3,1,2],:)) ,[2,3,1] );
end
if strfind(raydirection,'z')
countdirections = countdirections + 1;
gridOUTPUT(:,:,:,countdirections) = VOXELISEinternal(gridCOx,gridCOy,gridCOz,meshXYZ);
end
% Combine the results of each ray-tracing direction:
if numel(raydirection)>1
gridOUTPUT = sum(gridOUTPUT,4)>=numel(raydirection)/2;
end
%======================================================
% RETURN THE OUTPUT GRID TO THE SIZE REQUIRED BY THE USER (IF IT WAS CHANGED EARLIER)
%======================================================
if exist('gridcheckX','var')
if gridcheckX == 1
gridOUTPUT = gridOUTPUT(2:end,:,:);
gridCOx = gridCOx(2:end);
elseif gridcheckX == 2
gridOUTPUT = gridOUTPUT(1:end-1,:,:);
gridCOx = gridCOx(1:end-1);
elseif gridcheckX == 3
gridOUTPUT = gridOUTPUT(2:end-1,:,:);
gridCOx = gridCOx(2:end-1);
end
end
if exist('gridcheckY','var')
if gridcheckY == 1
gridOUTPUT = gridOUTPUT(:,2:end,:);
gridCOy = gridCOy(2:end);
elseif gridcheckY == 2
gridOUTPUT = gridOUTPUT(:,1:end-1,:);
gridCOy = gridCOy(1:end-1);
elseif gridcheckY == 3
gridOUTPUT = gridOUTPUT(:,2:end-1,:);
gridCOy = gridCOy(2:end-1);
end
end
if exist('gridcheckZ','var')
if gridcheckZ == 1
gridOUTPUT = gridOUTPUT(:,:,2:end);
gridCOz = gridCOz(2:end);
elseif gridcheckZ == 2
gridOUTPUT = gridOUTPUT(:,:,1:end-1);
gridCOz = gridCOz(1:end-1);
elseif gridcheckZ == 3
gridOUTPUT = gridOUTPUT(:,:,2:end-1);
gridCOz = gridCOz(2:end-1);
end
end
%======================================================
% PREPARE THE OUTPUT PARAMETERS
%======================================================
if nargout==4
varargout(1) = {gridCOx};
varargout(2) = {gridCOy};
varargout(3) = {gridCOz};
end
end %function
%==========================================================================
%==========================================================================
function [gridOUTPUT] = VOXELISEinternal(gridCOx,gridCOy,gridCOz,meshXYZ)
global STL;
%Count the number of voxels in each direction:
voxcountX = numel(gridCOx);
voxcountY = numel(gridCOy);
voxcountZ = numel(gridCOz);
% Prepare logical array to hold the voxelised data:
gridOUTPUT = false(voxcountX,voxcountY,voxcountZ);
%Identify the min and max x,y coordinates (cm) of the mesh:
meshXmin = min(min(meshXYZ(:,1,:)));
meshXmax = max(max(meshXYZ(:,1,:)));
meshYmin = min(min(meshXYZ(:,2,:)));
meshYmax = max(max(meshXYZ(:,2,:)));
meshZmin = min(min(meshXYZ(:,3,:)));
meshZmax = max(max(meshXYZ(:,3,:)));
%Identify the min and max x,y coordinates (pixels) of the mesh:
meshXminp = find(abs(gridCOx-meshXmin)==min(abs(gridCOx-meshXmin)));
meshXmaxp = find(abs(gridCOx-meshXmax)==min(abs(gridCOx-meshXmax)));
meshYminp = find(abs(gridCOy-meshYmin)==min(abs(gridCOy-meshYmin)));
meshYmaxp = find(abs(gridCOy-meshYmax)==min(abs(gridCOy-meshYmax)));
%Make sure min < max for the mesh coordinates:
if meshXminp > meshXmaxp
[meshXminp,meshXmaxp] = deal(meshXmaxp,meshXminp);
end %if
if meshYminp > meshYmaxp
[meshYminp,meshYmaxp] = deal(meshYmaxp,meshYminp);
end %if
%Identify the min and max x,y,z coordinates of each facet:
meshXYZmin = min(meshXYZ,[],3);
meshXYZmax = max(meshXYZ,[],3);
%======================================================
% VOXELISE THE MESH
%======================================================
loopYvector = meshYminp:meshYmaxp;
%correctionLIST = zeros(meshYmaxp,1);
%correctionLIST(1:meshYmaxp) = []; %Prepare to record all rays that fail the voxelisation. This array is built on-the-fly, but since
%it ought to be relatively small should not incur too much of a speed penalty.
correctionLIST = cell(meshYmaxp);
% Loop through each x,y pixel.
% The mesh will be voxelised by passing rays in the z-direction through
% each x,y pixel, and finding the locations where the rays cross the mesh.
parfor loopY = meshYminp:meshYmaxp
parcorrectionLIST = [];
%parindex = loopYvector-meshYminp+1;
A = meshXYZmin;
B = meshXYZmax;
C = gridCOx;
D = meshXYZ;
E = gridCOy(loopY);
F = [];
G = gridOUTPUT(:,loopY,:);
% - 1a - Find which mesh facets could possibly be crossed by the ray: (in
% the form of the indices of all the facets whose minY and maxY surrounds
% loopY)
possibleCROSSLISTy = find( A(:,2)<=E & B(:,2)>=E );
for loopX = meshXminp:meshXmaxp
% - 1b - Find which mesh facets could possibly be crossed by the ray:
possibleCROSSLIST = possibleCROSSLISTy( A(possibleCROSSLISTy,1)<=C(loopX) & B(possibleCROSSLISTy,1)>=C(loopX) );
% possibleCROSSLIST is a list of facet indices
if isempty(possibleCROSSLIST)==0 %Only continue the analysis if some nearby facets were actually identified
% - 2 - For each facet, check if the ray really does cross the facet rather than just passing it close-by:
% GENERAL METHOD:
% A. Take each edge of the facet in turn.
% B. Find the position of the opposing vertex to that edge.
% C. Find the position of the ray relative to that edge.
% D. Check if ray is on the same side of the edge as the opposing vertex.
% E. If this is true for all three edges, then the ray definitely passes through the facet.
%
% NOTES:
% A. If a ray crosses exactly on a vertex:
% a. If the surrounding facets have normal components pointing in the same (or opposite) direction as the ray then the face IS crossed.
% b. Otherwise, add the ray to the correctionlist.
facetCROSSLIST = []; %Prepare to record all facets which are crossed by the ray. This array is built on-the-fly, but since
%it ought to be relatively small (typically a list of <10) should not incur too much of a speed penalty.
% disp('ok1');
%----------
% - 1 - Check for crossed vertices:
%----------
% Find which mesh facets contain a vertex which is crossed by the ray:
vertexCROSSLIST = possibleCROSSLIST( (D(possibleCROSSLIST,1,1)==C(loopX) & D(possibleCROSSLIST,2,1)==E) ...
| (D(possibleCROSSLIST,1,2)==C(loopX) & D(possibleCROSSLIST,2,2)==E) ...
| (D(possibleCROSSLIST,1,3)==C(loopX) & D(possibleCROSSLIST,2,3)==E) ...
);
% so here the vertex crosslist has the facets that have a vertex that
% is intersects by the current ray crossing at (loopX,loopY)
if isempty(vertexCROSSLIST)==0 %Only continue the analysis if potential vertices were actually identified
checkindex = zeros(1,numel(vertexCROSSLIST));
%disp('ok2');
while min(checkindex) == 0
if STL.logistics.abort
break;
end
%finds the first checkindex that is not zeros and sets it to 1.
%That is the beginning of the volume
vertexindex = find(checkindex==0,1,'first');
checkindex(vertexindex) = 1;
[F,~] = CONVERT_meshformat(D(vertexCROSSLIST,:,:));
% gets a logical array with 1 for the temp.faces that are found in
% temp.faces(vert,:);
% finds the faces that share at least one vertex with the
% vertexindex face
% in short, it sets the adjacent indices to be 1 in the
% checkindex array
adjacentindex = ismember(F,F(vertexindex,:));
adjacentindex = max(adjacentindex,[],2);
checkindex(adjacentindex) = 1;
% get the vectors that are normal to the adjacent faces
coN = COMPUTE_mesh_normals(D(vertexCROSSLIST(adjacentindex),:,:));
% if the z direction of the normal of an adjacent face is not 0
% so if an adjacent face is not parallel to the ray
if max(coN(:,3))<0 || min(coN(:,3))>0
facetCROSSLIST = [facetCROSSLIST,vertexCROSSLIST(vertexindex)];
% WHAT IS THIS FOR????
else
possibleCROSSLIST = {};
parcorrectionLIST = [ parcorrectionLIST; loopX,loopY ];
checkindex(:) = 1;
end
end
end
% disp('ok3');
%----------
% - 2 - Check for crossed facets:
%----------
if isempty(possibleCROSSLIST)==0 %Only continue the analysis if some nearby facets were actually identified
for loopCHECKFACET = possibleCROSSLIST'
if STL.logistics.abort
break;
end
%Check if ray crosses the facet. This method is much (>>10 times) faster than using the built-in function 'inpolygon'.
%Taking each edge of the facet in turn, check if the ray is on the same side as the opposing vertex.
Y1predicted = D(loopCHECKFACET,2,2) - ((D(loopCHECKFACET,2,2)-D(loopCHECKFACET,2,3)) * (D(loopCHECKFACET,1,2)-D(loopCHECKFACET,1,1))/(D(loopCHECKFACET,1,2)-D(loopCHECKFACET,1,3)));
YRpredicted = D(loopCHECKFACET,2,2) - ((D(loopCHECKFACET,2,2)-D(loopCHECKFACET,2,3)) * (D(loopCHECKFACET,1,2)-C(loopX))/(D(loopCHECKFACET,1,2)-D(loopCHECKFACET,1,3)));
if (Y1predicted > D(loopCHECKFACET,2,1) && YRpredicted > E) || (Y1predicted < D(loopCHECKFACET,2,1) && YRpredicted < E)
%The ray is on the same side of the 2-3 edge as the 1st vertex.
Y2predicted = D(loopCHECKFACET,2,3) - ((D(loopCHECKFACET,2,3)-D(loopCHECKFACET,2,1)) * (D(loopCHECKFACET,1,3)-D(loopCHECKFACET,1,2))/(D(loopCHECKFACET,1,3)-D(loopCHECKFACET,1,1)));
YRpredicted = D(loopCHECKFACET,2,3) - ((D(loopCHECKFACET,2,3)-D(loopCHECKFACET,2,1)) * (D(loopCHECKFACET,1,3)-C(loopX))/(D(loopCHECKFACET,1,3)-D(loopCHECKFACET,1,1)));
if (Y2predicted > D(loopCHECKFACET,2,2) && YRpredicted > E) || (Y2predicted < D(loopCHECKFACET,2,2) && YRpredicted < E)
%The ray is on the same side of the 3-1 edge as the 2nd vertex.
Y3predicted = D(loopCHECKFACET,2,1) - ((D(loopCHECKFACET,2,1)-D(loopCHECKFACET,2,2)) * (D(loopCHECKFACET,1,1)-D(loopCHECKFACET,1,3))/(D(loopCHECKFACET,1,1)-D(loopCHECKFACET,1,2)));
YRpredicted = D(loopCHECKFACET,2,1) - ((D(loopCHECKFACET,2,1)-D(loopCHECKFACET,2,2)) * (D(loopCHECKFACET,1,1)-C(loopX))/(D(loopCHECKFACET,1,1)-D(loopCHECKFACET,1,2)));
if (Y3predicted > D(loopCHECKFACET,2,3) && YRpredicted > E) || (Y3predicted < D(loopCHECKFACET,2,3) && YRpredicted < E)
%The ray is on the same side of the 1-2 edge as the 3rd vertex.
%The ray passes through the facet since it is on the correct side of all 3 edges
facetCROSSLIST = [facetCROSSLIST,loopCHECKFACET];
end %if
end %if
end %if
end %for
%disp('ok4');
%----------
% - 3 - Find the z coordinate of the locations where the ray crosses each facet or vertex:
%----------
gridCOzCROSS = zeros(size(facetCROSSLIST));
for loopFINDZ = facetCROSSLIST
if STL.logistics.abort
break;
end
% METHOD:
% 1. Define the equation describing the plane of the facet. For a
% more detailed outline of the maths, see:
% http://local.wasp.uwa.edu.au/~pbourke/geometry/planeeq/
% Ax + By + Cz + D = 0
% where A = y1 (z2 - z3) + y2 (z3 - z1) + y3 (z1 - z2)
% B = z1 (x2 - x3) + z2 (x3 - x1) + z3 (x1 - x2)
% C = x1 (y2 - y3) + x2 (y3 - y1) + x3 (y1 - y2)
% D = - x1 (y2 z3 - y3 z2) - x2 (y3 z1 - y1 z3) - x3 (y1 z2 - y2 z1)
% 2. For the x and y coordinates of the ray, solve these equations to find the z coordinate in this plane.
planecoA = D(loopFINDZ,2,1)*(D(loopFINDZ,3,2)-D(loopFINDZ,3,3)) + D(loopFINDZ,2,2)*(D(loopFINDZ,3,3)-D(loopFINDZ,3,1)) + D(loopFINDZ,2,3)*(D(loopFINDZ,3,1)-D(loopFINDZ,3,2));
planecoB = D(loopFINDZ,3,1)*(D(loopFINDZ,1,2)-D(loopFINDZ,1,3)) + D(loopFINDZ,3,2)*(D(loopFINDZ,1,3)-D(loopFINDZ,1,1)) + D(loopFINDZ,3,3)*(D(loopFINDZ,1,1)-D(loopFINDZ,1,2));
planecoC = D(loopFINDZ,1,1)*(D(loopFINDZ,2,2)-D(loopFINDZ,2,3)) + D(loopFINDZ,1,2)*(D(loopFINDZ,2,3)-D(loopFINDZ,2,1)) + D(loopFINDZ,1,3)*(D(loopFINDZ,2,1)-D(loopFINDZ,2,2));
planecoD = - D(loopFINDZ,1,1)*(D(loopFINDZ,2,2)*D(loopFINDZ,3,3)-D(loopFINDZ,2,3)*D(loopFINDZ,3,2)) - D(loopFINDZ,1,2)*(D(loopFINDZ,2,3)*D(loopFINDZ,3,1)-D(loopFINDZ,2,1)*D(loopFINDZ,3,3)) - D(loopFINDZ,1,3)*(D(loopFINDZ,2,1)*D(loopFINDZ,3,2)-D(loopFINDZ,2,2)*D(loopFINDZ,3,1));
if abs(planecoC) < 1e-14
planecoC=0;
end
gridCOzCROSS(facetCROSSLIST==loopFINDZ) = (- planecoD - planecoA*C(loopX) - planecoB*E) / planecoC;
end %for
%Remove values of gridCOzCROSS which are outside of the mesh limits (including a 1e-12 margin for error).
gridCOzCROSS = gridCOzCROSS( gridCOzCROSS>=meshZmin-1e-12 & gridCOzCROSS<=meshZmax+1e-12 );
%Round gridCOzCROSS to remove any rounding errors, and take only the unique values:
gridCOzCROSS = round(gridCOzCROSS*1e12)/1e12;
gridCOzCROSS = unique(gridCOzCROSS);
%disp('ok5');
%----------
% - 4 - Label as being inside the mesh all the voxels that the ray passes through after crossing one facet before crossing another facet:
%----------
if rem(numel(gridCOzCROSS),2)==0 % Only rays which cross an even number of facets are voxelised
for loopASSIGN = 1:(numel(gridCOzCROSS)/2)
voxelsINSIDE = (gridCOz>gridCOzCROSS(2*loopASSIGN-1) & gridCOz<gridCOzCROSS(2*loopASSIGN));
G(loopX,voxelsINSIDE) = 1;
end %for
elseif numel(gridCOzCROSS)~=0 % Remaining rays which meet the mesh in some way are not voxelised, but are labelled for correction later.
parcorrectionLIST = [ parcorrectionLIST; loopX,loopY ];
end %if
end
end %if
end %for
%disp('ok6');
correctionLIST{loopY} = parcorrectionLIST;
%disp('ok7');
gridOUTPUT(:,loopY,:) = G;
%disp('ok8');
end %for
correctionLISTtemp = [];
for corindex = 1:numel(loopYvector)
correctionLISTtemp = [correctionLISTtemp; correctionLIST{corindex}];
end
correctionLIST = correctionLISTtemp;
%======================================================
% USE INTERPOLATION TO FILL IN THE RAYS WHICH COULD NOT BE VOXELISED
%======================================================
%For rays where the voxelisation did not give a clear result, the ray is
%computed by interpolating from the surrounding rays.
countCORRECTIONLIST = size(correctionLIST,1);
if countCORRECTIONLIST>0
%If necessary, add a one-pixel border around the x and y edges of the
%array. This prevents an error if the code tries to interpolate a ray at
%the edge of the x,y grid.
if min(correctionLIST(:,1))==1 || max(correctionLIST(:,1))==numel(gridCOx) || min(correctionLIST(:,2))==1 || max(correctionLIST(:,2))==numel(gridCOy)
gridOUTPUT = [zeros(1,voxcountY+2,voxcountZ);zeros(voxcountX,1,voxcountZ),gridOUTPUT,zeros(voxcountX,1,voxcountZ);zeros(1,voxcountY+2,voxcountZ)];
correctionLIST = correctionLIST + 1;
end
for loopC = 1:countCORRECTIONLIST
voxelsforcorrection = squeeze( sum( [ gridOUTPUT(correctionLIST(loopC,1)-1,correctionLIST(loopC,2)-1,:) ,...
gridOUTPUT(correctionLIST(loopC,1)-1,correctionLIST(loopC,2),:) ,...
gridOUTPUT(correctionLIST(loopC,1)-1,correctionLIST(loopC,2)+1,:) ,...
gridOUTPUT(correctionLIST(loopC,1),correctionLIST(loopC,2)-1,:) ,...
gridOUTPUT(correctionLIST(loopC,1),correctionLIST(loopC,2)+1,:) ,...
gridOUTPUT(correctionLIST(loopC,1)+1,correctionLIST(loopC,2)-1,:) ,...
gridOUTPUT(correctionLIST(loopC,1)+1,correctionLIST(loopC,2),:) ,...
gridOUTPUT(correctionLIST(loopC,1)+1,correctionLIST(loopC,2)+1,:) ,...
] ) );
voxelsforcorrection = (voxelsforcorrection>=4);
gridOUTPUT(correctionLIST(loopC,1),correctionLIST(loopC,2),voxelsforcorrection) = 1;
end %for
%Remove the one-pixel border surrounding the array, if this was added
%previously.
if size(gridOUTPUT,1)>numel(gridCOx) || size(gridOUTPUT,2)>numel(gridCOy)
gridOUTPUT = gridOUTPUT(2:end-1,2:end-1,:);
end
end %if
%disp([' Ray tracing result: ',num2str(countCORRECTIONLIST),' rays (',num2str(countCORRECTIONLIST/(voxcountX*voxcountY)*100,'%5.1f'),'% of all rays) exactly crossed a facet edge and had to be computed by interpolation.'])
end %function
%==========================================================================