forked from XingwenFu/mne2matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgetmatlab.py
206 lines (168 loc) · 7.91 KB
/
getmatlab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import glob
import numpy as np
import pyvista as pv
import nibabel as nib
from scipy.io import savemat
import mne
import cv2
def compute_and_save_fiducial_points(niiFiles, subject, subjects_dir):
# 读取 NIfTI 文件
nifti_file = glob.glob(os.path.join(niiFiles, '*.gz')) + glob.glob(os.path.join(niiFiles, '*.nii')) # 替换为你的 NIfTI 文件路径
if not nifti_file:
print("未找到.nii/nii.gz文件")
return
nifti_file = nifti_file[0]
# 读取 .obj 或 .stl 文件
obj_files = glob.glob(os.path.join(subjects_dir, subject, '*.obj'))
if not obj_files:
print("未找到.obj文件")
return
mesh = pv.read(obj_files[0]) # 或者使用 'path_to_your_file.stl'
# 提取点云数据
points = mesh.points
# 找到与X轴的交点 (Y=0, Z=0)
intersection_points_x = points[(abs(points[:, 1]) <= 1) & (abs(points[:, 2]) <= 1)]
# 找到与Y轴的交点 (X=0, Z=0)
intersection_points_y = points[(abs(points[:, 0]) <= 1) & (abs(points[:, 2]) <= 1)]
# 找到与Z轴的交点 (X=0, Y=0)
intersection_points_z = points[(abs(points[:, 0]) <= 1) & (abs(points[:, 1]) <= 1)]
def add_intersection_points(intersection_points, idx=0):
if intersection_points.size != 0:
# 找到最外侧的点 (坐标最大和最小的点)
min_point = intersection_points[np.argmin(intersection_points[:, idx])]
max_point = intersection_points[np.argmax(intersection_points[:, idx])]
print(f"与轴的交点的最小坐标的点:", min_point)
print(f"与轴的交点的最大坐标的点:", max_point)
# 返回最外侧的点
return min_point, max_point
else:
print("没有找到与轴的交点")
return None, None
# 可视化X轴交点
min_x_point, max_x_point = add_intersection_points(intersection_points_x, idx=0)
# 可视化Y轴交点
min_y_point, max_y_point = add_intersection_points(intersection_points_y, idx=1)
# 可视化Z轴交点
min_z_point, max_z_point = add_intersection_points(intersection_points_z, idx=2)
print(intersection_points_z)
# 读取NIfTI文件中的仿射矩阵
img = nib.load(nifti_file)
vox2ras = img.affine
# 定义转换矩阵
transform_matrix = np.linalg.pinv(np.array([[-1,0,0,128],[0,0,1,-128],[0,-1,0,128],[0,0,0,1]]))
# transform_matrix = np.linalg.pinv(vox2ras)
# 标准转个体
Z_MNI = transform_matrix @ np.concatenate([np.array(max_z_point),np.ones(1)]).T
L_MNI = transform_matrix @ np.concatenate([np.array(min_x_point),np.ones(1)]).T
R_MNI = transform_matrix @ np.concatenate([np.array(max_x_point),np.ones(1)]).T
N_MNI = transform_matrix @ np.concatenate([np.array(max_y_point),np.ones(1)]).T
Z_MNI = Z_MNI[0:3]
L_MNI = L_MNI[0:3]
R_MNI = R_MNI[0:3]
N_MNI = N_MNI[0:3]
# 保存为.mat文件
mni_coordinates = np.array([Z_MNI, L_MNI, R_MNI, N_MNI])
savemat(os.path.join(subjects_dir, subject, 'fiducial.mat'), {'fiducial_point': mni_coordinates})
# 设置源空间并保存
src = mne.setup_source_space(subject, subjects_dir=subjects_dir, spacing='oct6', add_dist=False)
src_file = os.path.join(subjects_dir, subject, 'src.fif')
mne.write_source_spaces(src_file, src, overwrite=True)
# 保存曲率
lcurv_file = os.path.join(subjects_dir, subject, 'surf', 'lh.curv')
lcurv_data = nib.freesurfer.io.read_morph_data(lcurv_file)
rcurv_file = os.path.join(subjects_dir, subject, 'surf', 'rh.curv')
rcurv_data = nib.freesurfer.io.read_morph_data(rcurv_file)
curv = np.concatenate([lcurv_data[src[0]['inuse']==1],rcurv_data[src[1]['inuse']==1]]).T
curvcurv = curv.copy()
curvcurv[curv<0] = -1
curvcurv[curv>0] = 1
savemat(os.path.join(subjects_dir, subject, 'curv.mat'), {'curvature': curvcurv})
# # 可视化原始点云数据和交点
# p = pv.Plotter(off_screen=True)
# p.add_points(points, color='black', point_size=1)
# p.show_axes()
# p.add_mesh(mesh, color='white')
# if min_x_point is not None and max_x_point is not None:
# p.add_mesh(pv.Sphere(radius=5, center=min_x_point), color='blue')
# p.add_mesh(pv.Sphere(radius=5, center=max_x_point), color='blue')
# if min_y_point is not None and max_y_point is not None:
# p.add_mesh(pv.Sphere(radius=5, center=min_y_point), color='green')
# p.add_mesh(pv.Sphere(radius=5, center=max_y_point), color='green')
# if min_z_point is not None and max_z_point is not None:
# p.add_mesh(pv.Sphere(radius=5, center=min_z_point), color='red')
# p.add_mesh(pv.Sphere(radius=5, center=max_z_point), color='red')
# outputDir='output_images_camera_path'
# capture_camera_path_images(p, outputDir)
# images_to_avi(outputDir, os.path.join(subjects_dir, subject, 'res.avi'))
def images_to_avi(folder_path, output_path, fps=30):
"""
将指定文件夹中的图片按顺序合成一个AVI格式的视频。
参数:
folder_path (str): 图片文件夹的路径。
output_path (str): 输出视频的保存路径和名称。
fps (int): 每秒显示的图片数(帧率)。默认为30。
返回值:
无
"""
# 获取文件夹中的所有图片文件
images = [img for img in os.listdir(folder_path) if img.endswith('.jpg') or img.endswith('.png')]
# 确保图片按顺序排列
images.sort()
# 检查是否有图片
if not images:
raise ValueError("文件夹中没有找到图片")
# 读取第一张图片以获取视频帧的尺寸
first_image = cv2.imread(os.path.join(folder_path, images[0]))
height, width, layers = first_image.shape
# 定义视频编码器
fourcc = cv2.VideoWriter_fourcc(*'DIVX')
video = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
# 将所有图片写入视频
for image in images:
img = cv2.imread(os.path.join(folder_path, image))
video.write(img)
# 释放资源
video.release()
cv2.destroyAllWindows()
def capture_camera_path_images(plotter, output_dir='output_images_camera_path'):
"""
Capture images along a camera path and save them to the specified directory.
Parameters:
- plotter: The PyVista plotter object used for rendering.
- output_dir: Directory to save the images. Defaults to 'output_images_camera_path'.
"""
# 创建保存图像的目录
os.makedirs(output_dir, exist_ok=True)
# 相机视角设置
elevation_angles_up = np.linspace(-60, 30, num=90) # 从-30度到30度的俯仰角
elevation_angles_down = np.linspace(30, 0, num=50) # 从30度回到0度的俯仰角
azimuth_angles = np.linspace(0, 360, num=360) # 从0到360度的方位角
frame_counter = 0
# 俯仰角从-30度到30度
for elevation in elevation_angles_up:
plotter.camera.elevation = elevation
plotter.render()
image_filename = os.path.join(output_dir, f'image_{frame_counter:04d}.png')
plotter.screenshot(image_filename)
frame_counter += 1
# 俯仰角从30度回到0度
for elevation in elevation_angles_down:
plotter.camera.elevation = elevation
plotter.render()
image_filename = os.path.join(output_dir, f'image_{frame_counter:04d}.png')
plotter.screenshot(image_filename)
frame_counter += 1
# 绕轴旋转360度
for azimuth in azimuth_angles:
plotter.camera.azimuth = azimuth
plotter.render()
image_filename = os.path.join(output_dir, f'image_{frame_counter:04d}.png')
plotter.screenshot(image_filename)
frame_counter += 1
if __name__ == '__main__':
# 使用你的文件路径替换 'F:\\程序\\MEG_FT'
compute_and_save_fiducial_points('dataInput', 'fastSurfer_web_2024-04-11-10-18-32_GCqR9', 'freesurfer')
# dataInput 为nii的文件夹
# fastSurfer_web_2024-04-11-10-18-32_GCqR9 是freesurfer分割的subject
# freesurfer 是subject 的文件夹