forked from NVIDIA/semantic-segmentation
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_multi_gradnorm.py
executable file
·421 lines (357 loc) · 18.3 KB
/
train_multi_gradnorm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
"""
training code
"""
from __future__ import absolute_import
from __future__ import division
import argparse
import logging
import os
import torch
from apex import amp
from config import cfg, assert_and_infer_cfg
from utils.misc import AverageMeter, prep_experiment, evaluate_eval_multi, fast_hist
import datasets
import loss
import network
import optimizer
from torchvision import transforms
from PIL import Image
# Argument Parser
parser = argparse.ArgumentParser(description='Semantic Segmentation')
parser.add_argument('--lr', type=float, default=0.002)
parser.add_argument('--arch', type=str, default='network.deepv3.DeepWV3Plus',
help='Network architecture. We have DeepSRNX50V3PlusD (backbone: ResNeXt50) \
and deepWV3Plus (backbone: WideResNet38).')
parser.add_argument('--dataset', type=str, default='cityscapes',
help='cityscapes, mapillary, camvid, kitti')
parser.add_argument('--cv', type=int, default=None,
help='cross-validation split id to use. Default # of splits set to 3 in config')
parser.add_argument('--class_uniform_pct', type=float, default=0.5,
help='What fraction of images is uniformly sampled')
parser.add_argument('--class_uniform_tile', type=int, default=1024,
help='tile size for class uniform sampling')
parser.add_argument('--coarse_boost_classes', type=str, default=None,
help='use coarse annotations to boost fine data with specific classes')
parser.add_argument('--img_wt_loss', action='store_true', default=False,
help='per-image class-weighted loss')
parser.add_argument('--batch_weighting', action='store_true', default=False,
help='Batch weighting for class (use nll class weighting using batch stats')
parser.add_argument('--jointwtborder', action='store_true', default=False,
help='Enable boundary label relaxation')
parser.add_argument('--strict_bdr_cls', type=str, default='',
help='Enable boundary label relaxation for specific classes')
parser.add_argument('--rlx_off_epoch', type=int, default=-1,
help='Turn off border relaxation after specific epoch count')
parser.add_argument('--rescale', type=float, default=1.0,
help='Warm Restarts new learning rate ratio compared to original lr')
parser.add_argument('--repoly', type=float, default=1.5,
help='Warm Restart new poly exp')
parser.add_argument('--apex', action='store_true', default=False,
help='Use Nvidia Apex Distributed Data Parallel')
parser.add_argument('--fp16', action='store_true', default=False,
help='Use Nvidia Apex AMP')
parser.add_argument('--local_rank', default=0, type=int,
help='parameter used by apex library')
parser.add_argument('--sgd', action='store_true', default=True)
parser.add_argument('--adam', action='store_true', default=False)
parser.add_argument('--amsgrad', action='store_true', default=False)
parser.add_argument('--freeze_trunk', action='store_true', default=False)
parser.add_argument('--hardnm', default=0, type=int,
help='0 means no aug, 1 means hard negative mining iter 1,' +
'2 means hard negative mining iter 2')
parser.add_argument('--trunk', type=str, default='resnet101',
help='trunk model, can be: resnet101 (default), resnet50')
parser.add_argument('--max_epoch', type=int, default=180)
parser.add_argument('--max_cu_epoch', type=int, default=100000,
help='Class Uniform Max Epochs')
parser.add_argument('--start_epoch', type=int, default=0)
parser.add_argument('--color_aug', type=float,
default=0.25, help='level of color augmentation')
parser.add_argument('--gblur', action='store_true', default=True,
help='Use Guassian Blur Augmentation')
parser.add_argument('--bblur', action='store_true', default=False,
help='Use Bilateral Blur Augmentation')
parser.add_argument('--lr_schedule', type=str, default='poly',
help='name of lr schedule: poly')
parser.add_argument('--poly_exp', type=float, default=1.0,
help='polynomial LR exponent')
parser.add_argument('--bs_mult', type=int, default=2,
help='Batch size for training per gpu')
parser.add_argument('--bs_mult_val', type=int, default=1,
help='Batch size for Validation per gpu')
parser.add_argument('--crop_size', type=int, default=720,
help='training crop size')
parser.add_argument('--pre_size', type=int, default=None,
help='resize image shorter edge to this before augmentation')
parser.add_argument('--scale_min', type=float, default=0.5,
help='dynamically scale training images down to this size')
parser.add_argument('--scale_max', type=float, default=2.0,
help='dynamically scale training images up to this size')
parser.add_argument('--weight_decay', type=float, default=1e-4)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--snapshot', type=str, default=None)
parser.add_argument('--restore_optimizer', action='store_true', default=False)
parser.add_argument('--exp', type=str, default='default',
help='experiment directory name')
parser.add_argument('--tb_tag', type=str, default='',
help='add tag to tb dir')
parser.add_argument('--ckpt', type=str, default='logs/ckpt',
help='Save Checkpoint Point')
parser.add_argument('--tb_path', type=str, default='logs/tb',
help='Save Tensorboard Path')
parser.add_argument('--syncbn', action='store_true', default=False,
help='Use Synchronized BN')
parser.add_argument('--dump_augmentation_images', action='store_true', default=False,
help='Dump Augmentated Images for sanity check')
parser.add_argument('--test_mode', action='store_true', default=False,
help='Minimum testing to verify nothing failed, ' +
'Runs code for 1 epoch of train and val')
parser.add_argument('-wb', '--wt_bound', type=float, default=1.0,
help='Weight Scaling for the losses')
parser.add_argument('--maxSkip', type=int, default=0,
help='Skip x number of frames of video augmented dataset')
parser.add_argument('--scf', action='store_true', default=False,
help='scale correction factor')
args = parser.parse_args()
args.best_record1 = {'epoch': -1, 'iter': 0, 'val_loss1': 1e10, 'acc1': 0,
'acc_cls1': 0, 'mean_iu1': 0, 'fwavacc1': 0}
args.best_record2 = {'epoch': -1, 'iter': 0, 'val_loss2': 1e10, 'acc2': 0,
'acc_cls2': 0, 'mean_iu2': 0, 'fwavacc2': 0}
args.best_record = {'epoch': -1, 'iter': 0, 'val_loss': 1e10, 'acc': 0,
'acc_cls': 0, 'mean_iu': 0, 'fwavacc': 0}
# Enable CUDNN Benchmarking optimization
torch.backends.cudnn.benchmark = True
args.world_size = 1
# Test Mode run two epochs with a few iterations of training and val
if args.test_mode:
args.max_epoch = 2
if 'WORLD_SIZE' in os.environ and args.apex:
args.apex = int(os.environ['WORLD_SIZE']) > 1
args.world_size = int(os.environ['WORLD_SIZE'])
print("Total world size: ", int(os.environ['WORLD_SIZE']))
if args.apex:
# Check that we are running with cuda as distributed is only supported for cuda.
torch.cuda.set_device(args.local_rank)
print('My Rank:', args.local_rank)
# Initialize distributed communication
torch.distributed.init_process_group(backend='nccl',
init_method='env://')
def main():
"""
Main Function
"""
# Set up the Arguments, Tensorboard Writer, Dataloader, Loss Fn, Optimizer
assert_and_infer_cfg(args)
writer = prep_experiment(args, parser)
train_loader, val_loader, train_obj = datasets.setup_loaders(args)
tasks = ['semantic', 'traversability']
criterion, criterion2, criterion_val = loss.get_loss(args, tasks=tasks)
net = network.get_net(args, criterion=criterion, criterion2=criterion2, tasks=tasks)
optim, scheduler = optimizer.get_optimizer(args, net)
if args.fp16:
net, optim = amp.initialize(net, optim, opt_level="O1")
net = network.wrap_network_in_dataparallel(net, args.apex)
if args.snapshot:
optimizer.load_weights(net, optim,
args.snapshot, args.restore_optimizer)
torch.cuda.empty_cache()
# Main Loop
initial_task_loss = []
for epoch in range(args.start_epoch, args.max_epoch):
# Update EPOCH CTR
cfg.immutable(False)
cfg.EPOCH = epoch
cfg.immutable(True)
scheduler.step()
initial_task_loss = train(train_loader, net, optim, epoch, writer, tasks, initial_task_loss)
if args.apex:
train_loader.sampler.set_epoch(epoch + 1)
validate(val_loader, net, criterion_val,
optim, epoch, writer)
if args.class_uniform_pct:
if epoch >= args.max_cu_epoch:
train_obj.build_epoch(cut=True)
if args.apex:
train_loader.sampler.set_num_samples()
else:
train_obj.build_epoch()
def train(train_loader, net, optim, curr_epoch, writer, tasks, initial_task_loss):
"""
Runs the training loop per epoch
train_loader: Data loader for train
net: thet network
optimizer: optimizer
curr_epoch: current epoch
writer: tensorboard writer
return:
"""
net.train()
GradNormLoss = torch.nn.L1Loss()
train_main_loss1 = AverageMeter()
train_main_loss2 = AverageMeter()
train_main_loss = AverageMeter()
curr_iter = curr_epoch * len(train_loader)
for i, data in enumerate(train_loader):
inputs, gts, _img_name, inputs2, gts2, _img_name2 = data
batch_pixel_size = inputs.size(0) * inputs.size(2) * inputs.size(3)
inputs, gts = inputs.cuda(), gts.cuda()
inputs2, gts2 = inputs2.cuda(), gts2.cuda()
# DEBUG
'''img = transforms.ToPILImage()(inputs[0,:].squeeze_(0))
img.save('images/inputs.png')
img = transforms.ToPILImage()(gts[0,:].type(torch.DoubleTensor))
img.save('images/gts.png')
img = transforms.ToPILImage()(inputs2[0,:].squeeze_(0))
img.save('images/inputs2.png')
img = transforms.ToPILImage()(gts2[0,:].type(torch.DoubleTensor))
img.save('images/gts2.png')'''
optim.zero_grad()
main_loss1 = net(inputs, gts=gts, task='semantic')
main_loss2 = net(inputs2, gts=gts2, task='traversability')
#main_loss = main_loss1 + main_loss2
task_loss = []
task_loss.append(main_loss1)
task_loss.append(main_loss2)
task_loss = torch.stack(task_loss)
weighted_task_loss = torch.mul(net.module.task_weights, task_loss)
# Initialize the initial loss L(0) if t=0
if curr_iter == 0:
initial_task_loss = task_loss.data
# get the total loss
main_loss = torch.sum(weighted_task_loss)
if args.apex:
log_main_loss1 = main_loss1.clone().detach_()
log_main_loss2 = main_loss2.clone().detach_()
log_main_loss = main_loss.clone().detach_()
torch.distributed.all_reduce(log_main_loss1, torch.distributed.ReduceOp.SUM)
torch.distributed.all_reduce(log_main_loss2, torch.distributed.ReduceOp.SUM)
torch.distributed.all_reduce(log_main_loss, torch.distributed.ReduceOp.SUM)
log_main_loss1 = log_main_loss1 / args.world_size
log_main_loss2 = log_main_loss2 / args.world_size
log_main_loss = log_main_loss / args.world_size
else:
main_loss1 = main_loss1.mean()
main_loss2 = main_loss2.mean()
main_loss = main_loss.mean()
log_main_loss1 = main_loss1.clone().detach_()
log_main_loss2 = main_loss2.clone().detach_()
log_main_loss = main_loss.clone().detach_()
train_main_loss1.update(log_main_loss1.item(), batch_pixel_size)
train_main_loss2.update(log_main_loss2.item(), batch_pixel_size)
train_main_loss.update(log_main_loss.item(), batch_pixel_size)
if args.fp16:
with amp.scale_loss(main_loss, optim) as scaled_loss:
scaled_loss.backward()
'''with amp.scale_loss(main_loss1, optim) as scaled_loss:
scaled_loss.backward(retain_graph=True)
with amp.scale_loss(main_loss2, optim) as scaled_loss:
scaled_loss.backward()'''
else:
main_loss.backward(retain_graph=True)
'''main_loss1.backward(retain_graph=True)
main_loss2.backward()'''
# Set the gradients of w_i(t) according to GradNorm loss
net.module.task_weights.grad.data = net.module.task_weights.grad.data * 0.0
if True:
W = net.module.get_last_shared_layer()
norms = []
for t in range(len(task_loss)):
gygw = torch.autograd.grad(task_loss[t], W.parameters(), retain_graph=True)
norms.append(torch.norm(torch.mul(net.module.task_weights[t], gygw[0]), p=2))
norms = torch.stack(norms)
mean_norm = torch.mean(norms)
#print('G_w(t): {}'.format(norms))
# compute the inverse training rate r_i(t)
loss_ratio = task_loss / initial_task_loss
inverse_train_rate = loss_ratio / torch.mean(loss_ratio)
# compute the GradNorm loss
constant_term = mean_norm * (inverse_train_rate ** 0.15)
constant_term = constant_term.detach()
# this is the GradNorm loss itself
grad_norm_loss = torch.add(GradNormLoss(norms[0], constant_term[0]), GradNormLoss(norms[1], constant_term[1]))
# compute the gradient for the task weights
net.module.task_weights.grad = torch.autograd.grad(grad_norm_loss, net.module.task_weights)[0]
optim.step()
# renormalize task weights
normalize_coeff = 2.0 / torch.sum(net.module.task_weights.data, dim=0)
net.module.task_weights.data = net.module.task_weights.data * normalize_coeff
curr_iter += 1
if args.local_rank == 0:
msg = '[epoch {}], [iter {} / {}], [loss1 {:0.6f}], [loss2 {:0.6f}], [w1 {:0.6f}], [w2 {:0.6f}], [main loss {:0.6f}], [lr {:0.6f}]'.format(
curr_epoch, i + 1, len(train_loader), train_main_loss1.avg, train_main_loss2.avg,
net.module.task_weights.data[0], net.module.task_weights.data[1], train_main_loss.avg,
optim.param_groups[-1]['lr'])
logging.info(msg)
# Log tensorboard metrics for each iteration of the training phase
writer.add_scalar('training/weight1', net.module.task_weights.data[0], curr_iter)
writer.add_scalar('training/weight2', net.module.task_weights.data[1], curr_iter)
writer.add_scalar('training/loss1', (train_main_loss1.val), curr_iter)
writer.add_scalar('training/loss2', (train_main_loss2.val), curr_iter)
writer.add_scalar('training/loss', (train_main_loss.val), curr_iter)
writer.add_scalar('training/lr', optim.param_groups[-1]['lr'], curr_iter)
if i > 5 and args.test_mode:
return
return initial_task_loss
def validate(val_loader, net, criterion, optim, curr_epoch, writer):
"""
Runs the validation loop after each training epoch
val_loader: Data loader for validation
net: thet network
criterion: loss fn
optimizer: optimizer
curr_epoch: current epoch
writer: tensorboard writer
return: val_avg for step function if required
"""
net.eval()
val_loss1 = AverageMeter()
val_loss2 = AverageMeter()
iou_acc1 = 0
iou_acc2 = 0
dump_images = []
for val_idx, data in enumerate(val_loader):
inputs, gt_image, img_names, inputs2, gt_image2, img_names2 = data
assert len(inputs.size()) == 4 and len(gt_image.size()) == 3
assert inputs.size()[2:] == gt_image.size()[1:]
batch_pixel_size = inputs.size(0) * inputs.size(2) * inputs.size(3)
inputs, gt_cuda = inputs.cuda(), gt_image.cuda()
inputs2, gt_cuda2 = inputs2.cuda(), gt_image2.cuda()
with torch.no_grad():
output1, _ = net(inputs) # output = (1, 19, 713, 713)
_, output2 = net(inputs2)
assert output1.size()[2:] == gt_image.size()[1:]
assert output1.size()[1] == args.dataset_cls.num_classes1
assert output2.size()[2:] == gt_image2.size()[1:]
assert output2.size()[1] == args.dataset_cls.num_classes2
val_loss1.update(criterion(output1, gt_cuda).item(), batch_pixel_size)
val_loss2.update(criterion(output2, gt_cuda2).item(), batch_pixel_size)
predictions1 = output1.data.max(1)[1].cpu()
predictions2 = output2.data.max(1)[1].cpu()
# Logging
if val_idx % 20 == 0:
if args.local_rank == 0:
logging.info("validating: %d / %d", val_idx + 1, len(val_loader))
if val_idx > 10 and args.test_mode:
break
# Image Dumps
if val_idx < 10:
dump_images.append([gt_image, predictions1, img_names])
dump_images.append([gt_image2, predictions2, img_names2])
iou_acc1 += fast_hist(predictions1.numpy().flatten(), gt_image.numpy().flatten(),
args.dataset_cls.num_classes1)
iou_acc2 += fast_hist(predictions2.numpy().flatten(), gt_image2.numpy().flatten(),
args.dataset_cls.num_classes2)
del output1, output2, val_idx, data
if args.apex:
iou_acc_tensor1 = torch.cuda.FloatTensor(iou_acc1)
iou_acc_tensor2 = torch.cuda.FloatTensor(iou_acc2)
torch.distributed.all_reduce(iou_acc_tensor1, op=torch.distributed.ReduceOp.SUM)
torch.distributed.all_reduce(iou_acc_tensor2, op=torch.distributed.ReduceOp.SUM)
iou_acc1 = iou_acc_tensor1.cpu().numpy()
iou_acc2 = iou_acc_tensor2.cpu().numpy()
if args.local_rank == 0:
evaluate_eval_multi(args, net, optim, val_loss1, val_loss2, iou_acc1, iou_acc2, dump_images,
writer, curr_epoch, args.dataset_cls)
return val_loss1.avg, val_loss2.avg
if __name__ == '__main__':
main()