Skip to content

BuiltInSpecies

Travis CI edited this page Oct 29, 2017 · 42 revisions

Built-in Species


This file is automatically generated from java files. Do Not Edit It.


It is possible to use in the models a set of built-in agents. These agents allow to directly use some advance features like clustering, multi-criteria analysis, etc. The creation of these agents are similar as for other kinds of agents:

create species: my_built_in_agent returns: the_agent;

So, for instance, to be able to use clustering techniques in the model:

create cluster_builder returns: clusterer;

Table of Contents

<wiki:toc max_depth="3" /> agent, AgentDB, base_edge, experiment, graph_edge, graph_node, physical_world,


agent

Actions

_init_

  • returns: unknown

_step_

  • returns: unknown

AgentDB

Actions

close

  • returns: unknown

connect

  • returns: unknown

  • params (map): Connection parameters

executeUpdate

  • returns: int

  • updateComm (string): SQL commands such as Create, Update, Delete, Drop with question mark

  • values (list): List of values that are used to replace question mark

getParameter

  • returns: unknown

insert

  • returns: int

  • into (string): Table name

  • columns (list): List of column name of table

  • values (list): List of values that are used to insert into table. Columns and values must have same size

isConnected

  • returns: bool

select

  • returns: list

  • select (string): select string

  • values (list): List of values that are used to replace question marks

setParameter

  • returns: unknown

  • params (map): Connection parameters

testConnection

  • returns: bool

  • params (map): Connection parameters

timeStamp

  • returns: float

base_edge

Actions


experiment

Actions

update_outputs

Forces all outputs to refresh, optionally recomputing their values

  • returns: unknown

  • recompute (boolean): Whether or not to force the outputs to make a computation step


graph_edge

Actions


graph_node

Actions

related_to

This operator should never be called

  • returns: bool

  • other (agent): The other agent


physical_world

Actions

compute_forces

  • returns: unknown

  • step (float):

  1. What's new (Changelog)
  1. Installation and Launching
    1. Installation
    2. Launching GAMA
    3. Updating GAMA
    4. Installing Plugins
  2. Workspace, Projects and Models
    1. Navigating in the Workspace
    2. Changing Workspace
    3. Importing Models
  3. Editing Models
    1. GAML Editor (Generalities)
    2. GAML Editor Tools
    3. Validation of Models
  4. Running Experiments
    1. Launching Experiments
    2. Experiments User interface
    3. Controls of experiments
    4. Parameters view
    5. Inspectors and monitors
    6. Displays
    7. Batch Specific UI
    8. Errors View
  5. Running Headless
    1. Headless Batch
    2. Headless Server
    3. Headless Legacy
  6. Preferences
  7. Troubleshooting
  1. Introduction
    1. Start with GAML
    2. Organization of a Model
    3. Basic programming concepts in GAML
  2. Manipulate basic Species
  3. Global Species
    1. Regular Species
    2. Defining Actions and Behaviors
    3. Interaction between Agents
    4. Attaching Skills
    5. Inheritance
  4. Defining Advanced Species
    1. Grid Species
    2. Graph Species
    3. Mirror Species
    4. Multi-Level Architecture
  5. Defining GUI Experiment
    1. Defining Parameters
    2. Defining Displays Generalities
    3. Defining 3D Displays
    4. Defining Charts
    5. Defining Monitors and Inspectors
    6. Defining Export files
    7. Defining User Interaction
  6. Exploring Models
    1. Run Several Simulations
    2. Batch Experiments
    3. Exploration Methods
  7. Optimizing Model Section
    1. Runtime Concepts
    2. Optimizing Models
  8. Multi-Paradigm Modeling
    1. Control Architecture
    2. Defining Differential Equations
  1. Manipulate OSM Data
  2. Diffusion
  3. Using Database
  4. Using FIPA ACL
  5. Using BDI with BEN
  6. Using Driving Skill
  7. Manipulate dates
  8. Manipulate lights
  9. Using comodel
  10. Save and restore Simulations
  11. Using network
  12. Headless mode
  13. Using Headless
  14. Writing Unit Tests
  15. Ensure model's reproducibility
  16. Going further with extensions
    1. Calling R
    2. Using Graphical Editor
    3. Using Git from GAMA
  1. Built-in Species
  2. Built-in Skills
  3. Built-in Architecture
  4. Statements
  5. Data Type
  6. File Type
  7. Expressions
    1. Literals
    2. Units and Constants
    3. Pseudo Variables
    4. Variables And Attributes
    5. Operators [A-A]
    6. Operators [B-C]
    7. Operators [D-H]
    8. Operators [I-M]
    9. Operators [N-R]
    10. Operators [S-Z]
  8. Exhaustive list of GAMA Keywords
  1. Installing the GIT version
  2. Developing Extensions
    1. Developing Plugins
    2. Developing Skills
    3. Developing Statements
    4. Developing Operators
    5. Developing Types
    6. Developing Species
    7. Developing Control Architectures
    8. Index of annotations
  3. Introduction to GAMA Java API
    1. Architecture of GAMA
    2. IScope
  4. Using GAMA flags
  5. Creating a release of GAMA
  6. Documentation generation

  1. Predator Prey
  2. Road Traffic
  3. 3D Tutorial
  4. Incremental Model
  5. Luneray's flu
  6. BDI Agents

  1. Team
  2. Projects using GAMA
  3. Scientific References
  4. Training Sessions

Resources

  1. Videos
  2. Conferences
  3. Code Examples
  4. Pedagogical materials
Clone this wiki locally