-
Notifications
You must be signed in to change notification settings - Fork 123
/
Copy pathpreprocess.py
147 lines (113 loc) · 5.17 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import numpy as np
import nltk
import gensim
class Word2Vec():
def __init__(self):
# Load Google's pre-trained Word2Vec model.
self.model = gensim.models.KeyedVectors.load_word2vec_format('./GoogleNews-vectors-negative300.bin',
binary=True)
self.unknowns = np.random.uniform(-0.01, 0.01, 300).astype("float32")
def get(self, word):
if word not in self.model.vocab:
return self.unknowns
else:
return self.model.word_vec(word)
class Data():
def __init__(self, word2vec, max_len=0):
self.s1s, self.s2s, self.labels, self.features = [], [], [], []
self.index, self.max_len, self.word2vec = 0, max_len, word2vec
def open_file(self):
pass
def is_available(self):
if self.index < self.data_size:
return True
else:
return False
def reset_index(self):
self.index = 0
def next(self):
if (self.is_available()):
self.index += 1
return self.data[self.index - 1]
else:
return
def next_batch(self, batch_size):
batch_size = min(self.data_size - self.index, batch_size)
s1_mats, s2_mats = [], []
for i in range(batch_size):
s1 = self.s1s[self.index + i]
s2 = self.s2s[self.index + i]
# [1, d0, s]
s1_mats.append(np.expand_dims(np.pad(np.column_stack([self.word2vec.get(w) for w in s1]),
[[0, 0], [0, self.max_len - len(s1)]],
"constant"), axis=0))
s2_mats.append(np.expand_dims(np.pad(np.column_stack([self.word2vec.get(w) for w in s2]),
[[0, 0], [0, self.max_len - len(s2)]],
"constant"), axis=0))
# [batch_size, d0, s]
batch_s1s = np.concatenate(s1_mats, axis=0)
batch_s2s = np.concatenate(s2_mats, axis=0)
batch_labels = self.labels[self.index:self.index + batch_size]
batch_features = self.features[self.index:self.index + batch_size]
self.index += batch_size
return batch_s1s, batch_s2s, batch_labels, batch_features
class MSRP(Data):
def open_file(self, mode, parsing_method="normal"):
with open("./MSRP_Corpus/msr_paraphrase_" + mode + ".txt", "r", encoding="utf-8") as f:
f.readline()
for line in f:
items = line[:-1].split("\t")
label = int(items[0])
if parsing_method == "NLTK":
s1 = nltk.word_tokenize(items[3])
s2 = nltk.word_tokenize(items[4])
else:
s1 = items[3].strip().split()
s2 = items[4].strip().split()
# bleu_score = nltk.translate.bleu_score.sentence_bleu(s1, s2)
# sentence_bleu(s1, s2, smoothing_function=nltk.translate.bleu_score.SmoothingFunction.method1)
self.s1s.append(s1)
self.s2s.append(s2)
self.labels.append(label)
self.features.append([len(s1), len(s2)])
# double use training data
"""
if mode == "train":
self.s1s.append(s2)
self.s2s.append(s1)
self.labels.append(label)
self.features.append([len(s2), len(s1)])
"""
local_max_len = max(len(s1), len(s2))
if local_max_len > self.max_len:
self.max_len = local_max_len
self.data_size = len(self.s1s)
self.num_features = len(self.features[0])
class WikiQA(Data):
def open_file(self, mode):
with open("./WikiQA_Corpus/WikiQA-" + mode + ".txt", "r", encoding="utf-8") as f:
stopwords = nltk.corpus.stopwords.words("english")
for line in f:
items = line[:-1].split("\t")
s1 = items[0].lower().split()
# truncate answers to 40 tokens.
s2 = items[1].lower().split()[:40]
label = int(items[2])
self.s1s.append(s1)
self.s2s.append(s2)
self.labels.append(label)
word_cnt = len([word for word in s1 if (word not in stopwords) and (word in s2)])
self.features.append([len(s1), len(s2), word_cnt])
local_max_len = max(len(s1), len(s2))
if local_max_len > self.max_len:
self.max_len = local_max_len
self.data_size = len(self.s1s)
flatten = lambda l: [item for sublist in l for item in sublist]
q_vocab = list(set(flatten(self.s1s)))
idf = {}
for w in q_vocab:
idf[w] = np.log(self.data_size / len([1 for s1 in self.s1s if w in s1]))
for i in range(self.data_size):
wgt_word_cnt = sum([idf[word] for word in self.s1s[i] if (word not in stopwords) and (word in self.s2s[i])])
self.features[i].append(wgt_word_cnt)
self.num_features = len(self.features[0])