-
Notifications
You must be signed in to change notification settings - Fork 123
/
Copy pathABCNN.py
212 lines (174 loc) · 9.44 KB
/
ABCNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import tensorflow as tf
import numpy as np
class ABCNN():
def __init__(self, s, w, l2_reg, model_type, num_features, d0=300, di=50, num_classes=2, num_layers=2):
"""
Implmenentaion of ABCNNs
(https://arxiv.org/pdf/1512.05193.pdf)
:param s: sentence length
:param w: filter width
:param l2_reg: L2 regularization coefficient
:param model_type: Type of the network(BCNN, ABCNN1, ABCNN2, ABCNN3).
:param num_features: The number of pre-set features(not coming from CNN) used in the output layer.
:param d0: dimensionality of word embedding(default: 300)
:param di: The number of convolution kernels (default: 50)
:param num_classes: The number of classes for answers.
:param num_layers: The number of convolution layers.
"""
self.x1 = tf.placeholder(tf.float32, shape=[None, d0, s], name="x1")
self.x2 = tf.placeholder(tf.float32, shape=[None, d0, s], name="x2")
self.y = tf.placeholder(tf.int32, shape=[None], name="y")
self.features = tf.placeholder(tf.float32, shape=[None, num_features], name="features")
# zero padding to inputs for wide convolution
def pad_for_wide_conv(x):
return tf.pad(x, np.array([[0, 0], [0, 0], [w - 1, w - 1], [0, 0]]), "CONSTANT", name="pad_wide_conv")
def cos_sim(v1, v2):
norm1 = tf.sqrt(tf.reduce_sum(tf.square(v1), axis=1))
norm2 = tf.sqrt(tf.reduce_sum(tf.square(v2), axis=1))
dot_products = tf.reduce_sum(v1 * v2, axis=1, name="cos_sim")
return dot_products / (norm1 * norm2)
def euclidean_score(v1, v2):
euclidean = tf.sqrt(tf.reduce_sum(tf.square(v1 - v2), axis=1))
return 1 / (1 + euclidean)
def make_attention_mat(x1, x2):
# x1, x2 = [batch, height, width, 1] = [batch, d, s, 1]
# x2 => [batch, height, 1, width]
# [batch, width, wdith] = [batch, s, s]
euclidean = tf.sqrt(tf.reduce_sum(tf.square(x1 - tf.matrix_transpose(x2)), axis=1))
return 1 / (1 + euclidean)
def convolution(name_scope, x, d, reuse):
with tf.name_scope(name_scope + "-conv"):
with tf.variable_scope("conv") as scope:
conv = tf.contrib.layers.conv2d(
inputs=x,
num_outputs=di,
kernel_size=(d, w),
stride=1,
padding="VALID",
activation_fn=tf.nn.tanh,
weights_initializer=tf.contrib.layers.xavier_initializer_conv2d(),
weights_regularizer=tf.contrib.layers.l2_regularizer(scale=l2_reg),
biases_initializer=tf.constant_initializer(1e-04),
reuse=reuse,
trainable=True,
scope=scope
)
# Weight: [filter_height, filter_width, in_channels, out_channels]
# output: [batch, 1, input_width+filter_Width-1, out_channels] == [batch, 1, s+w-1, di]
# [batch, di, s+w-1, 1]
conv_trans = tf.transpose(conv, [0, 3, 2, 1], name="conv_trans")
return conv_trans
def w_pool(variable_scope, x, attention):
# x: [batch, di, s+w-1, 1]
# attention: [batch, s+w-1]
with tf.variable_scope(variable_scope + "-w_pool"):
if model_type == "ABCNN2" or model_type == "ABCNN3":
pools = []
# [batch, s+w-1] => [batch, 1, s+w-1, 1]
attention = tf.transpose(tf.expand_dims(tf.expand_dims(attention, -1), -1), [0, 2, 1, 3])
for i in range(s):
# [batch, di, w, 1], [batch, 1, w, 1] => [batch, di, 1, 1]
pools.append(tf.reduce_sum(x[:, :, i:i + w, :] * attention[:, :, i:i + w, :],
axis=2,
keep_dims=True))
# [batch, di, s, 1]
w_ap = tf.concat(pools, axis=2, name="w_ap")
else:
w_ap = tf.layers.average_pooling2d(
inputs=x,
# (pool_height, pool_width)
pool_size=(1, w),
strides=1,
padding="VALID",
name="w_ap"
)
# [batch, di, s, 1]
return w_ap
def all_pool(variable_scope, x):
with tf.variable_scope(variable_scope + "-all_pool"):
if variable_scope.startswith("input"):
pool_width = s
d = d0
else:
pool_width = s + w - 1
d = di
all_ap = tf.layers.average_pooling2d(
inputs=x,
# (pool_height, pool_width)
pool_size=(1, pool_width),
strides=1,
padding="VALID",
name="all_ap"
)
# [batch, di, 1, 1]
# [batch, di]
all_ap_reshaped = tf.reshape(all_ap, [-1, d])
#all_ap_reshaped = tf.squeeze(all_ap, [2, 3])
return all_ap_reshaped
def CNN_layer(variable_scope, x1, x2, d):
# x1, x2 = [batch, d, s, 1]
with tf.variable_scope(variable_scope):
if model_type == "ABCNN1" or model_type == "ABCNN3":
with tf.name_scope("att_mat"):
aW = tf.get_variable(name="aW",
shape=(s, d),
initializer=tf.contrib.layers.xavier_initializer(),
regularizer=tf.contrib.layers.l2_regularizer(scale=l2_reg))
# [batch, s, s]
att_mat = make_attention_mat(x1, x2)
# [batch, s, s] * [s,d] => [batch, s, d]
# matrix transpose => [batch, d, s]
# expand dims => [batch, d, s, 1]
x1_a = tf.expand_dims(tf.matrix_transpose(tf.einsum("ijk,kl->ijl", att_mat, aW)), -1)
x2_a = tf.expand_dims(tf.matrix_transpose(
tf.einsum("ijk,kl->ijl", tf.matrix_transpose(att_mat), aW)), -1)
# [batch, d, s, 2]
x1 = tf.concat([x1, x1_a], axis=3)
x2 = tf.concat([x2, x2_a], axis=3)
left_conv = convolution(name_scope="left", x=pad_for_wide_conv(x1), d=d, reuse=False)
right_conv = convolution(name_scope="right", x=pad_for_wide_conv(x2), d=d, reuse=True)
left_attention, right_attention = None, None
if model_type == "ABCNN2" or model_type == "ABCNN3":
# [batch, s+w-1, s+w-1]
att_mat = make_attention_mat(left_conv, right_conv)
# [batch, s+w-1], [batch, s+w-1]
left_attention, right_attention = tf.reduce_sum(att_mat, axis=2), tf.reduce_sum(att_mat, axis=1)
left_wp = w_pool(variable_scope="left", x=left_conv, attention=left_attention)
left_ap = all_pool(variable_scope="left", x=left_conv)
right_wp = w_pool(variable_scope="right", x=right_conv, attention=right_attention)
right_ap = all_pool(variable_scope="right", x=right_conv)
return left_wp, left_ap, right_wp, right_ap
x1_expanded = tf.expand_dims(self.x1, -1)
x2_expanded = tf.expand_dims(self.x2, -1)
LO_0 = all_pool(variable_scope="input-left", x=x1_expanded)
RO_0 = all_pool(variable_scope="input-right", x=x2_expanded)
LI_1, LO_1, RI_1, RO_1 = CNN_layer(variable_scope="CNN-1", x1=x1_expanded, x2=x2_expanded, d=d0)
sims = [cos_sim(LO_0, RO_0), cos_sim(LO_1, RO_1)]
if num_layers > 1:
_, LO_2, _, RO_2 = CNN_layer(variable_scope="CNN-2", x1=LI_1, x2=RI_1, d=di)
self.test = LO_2
self.test2 = RO_2
sims.append(cos_sim(LO_2, RO_2))
with tf.variable_scope("output-layer"):
self.output_features = tf.concat([self.features, tf.stack(sims, axis=1)], axis=1, name="output_features")
self.estimation = tf.contrib.layers.fully_connected(
inputs=self.output_features,
num_outputs=num_classes,
activation_fn=None,
weights_initializer=tf.contrib.layers.xavier_initializer(),
weights_regularizer=tf.contrib.layers.l2_regularizer(scale=l2_reg),
biases_initializer=tf.constant_initializer(1e-04),
scope="FC"
)
self.prediction = tf.contrib.layers.softmax(self.estimation)[:, 1]
self.cost = tf.add(
tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.estimation, labels=self.y)),
tf.reduce_sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)),
name="cost")
tf.summary.scalar("cost", self.cost)
self.merged = tf.summary.merge_all()
print("=" * 50)
print("List of Variables:")
for v in tf.trainable_variables():
print(v.name)
print("=" * 50)