From 25a1408faca8b114c16285efaf81c0160efb5c73 Mon Sep 17 00:00:00 2001 From: Karl Gaissmaier Date: Sat, 28 Jan 2023 14:13:44 +0100 Subject: [PATCH] rearrange param and receiver --- comparer.go | 14 ++-- helpers.go | 20 +++--- treap.go | 194 +++++++++++++++++++++++----------------------------- 3 files changed, 103 insertions(+), 125 deletions(-) diff --git a/comparer.go b/comparer.go index e65736e..6f80d7f 100644 --- a/comparer.go +++ b/comparer.go @@ -67,7 +67,7 @@ package interval // | B1----B2 | | | | | | // -------------------------|---------------------------------------- // -func (t Tree[T]) compare(a, b T) int { +func (t *Tree[T]) compare(a, b T) int { ll, rr, _, _ := t.cmp(a, b) switch { case ll == 0: @@ -80,7 +80,7 @@ func (t Tree[T]) compare(a, b T) int { } } -// covers, returns true if a covers b. +// cmpCovers, returns true if a cmpCovers b. // // =================================================================| // | visualization | ll | rr | lr | rl | description | @@ -100,12 +100,12 @@ func (t Tree[T]) compare(a, b T) int { // | B1----B2 | | | | | | // -------------------------|---------------------------------------- // -func (t Tree[T]) covers(a, b T) bool { +func (t *Tree[T]) cmpCovers(a, b T) bool { ll, rr, _, _ := t.cmp(a, b) return ll <= 0 && rr >= 0 } -// intersects, returns false if the intervals does precede each other. +// cmpIntersects, returns false if the intervals does precede each other. // // =================================================================| // | visualization | ll | rr | lr | rl | description | @@ -119,19 +119,19 @@ func (t Tree[T]) covers(a, b T) bool { // | B1---B2 | | | | | | // -------------------------|---------------------------------------| // -func (t Tree[T]) intersects(a, b T) bool { +func (t *Tree[T]) cmpIntersects(a, b T) bool { ll, rr, lr, rl := t.cmp(a, b) return !((ll == -1 && rr == -1 && lr == -1 && rl == -1) || (ll == 1 && rr == 1 && lr == 1 && rl == 1)) } // cmpRR, compares just the right point of the intervals. -func (t Tree[T]) cmpRR(a, b T) int { +func (t *Tree[T]) cmpRR(a, b T) int { _, rr, _, _ := t.cmp(a, b) return rr } // cmpLR, compares just the left point from a with right point from b. -func (t Tree[T]) cmpLR(a, b T) int { +func (t *Tree[T]) cmpLR(a, b T) int { _, _, lr, _ := t.cmp(a, b) return lr } diff --git a/helpers.go b/helpers.go index ce9fba6..542ec45 100644 --- a/helpers.go +++ b/helpers.go @@ -273,7 +273,7 @@ func (n *node[T]) pcmForNode(pcm parentChildsMap[T], t *Tree[T]) parentChildsMap for j := len(pcm.stack) - 1; j >= 0; j-- { that := pcm.stack[j] - if t.covers(that.item, n.item) { + if t.cmpCovers(that.item, n.item) { // item in node j is parent to item pcm.pcMap[that] = append(pcm.pcMap[that], n) break @@ -383,10 +383,10 @@ func (t Tree[T]) Visit(start, stop T, visitFn func(item T) bool) { } // treaps are really cool datastructures!!! - _, mid1, r := t.root.split(start, true, &t) - l, mid2, _ := r.split(stop, true, &t) + _, mid1, r := t.split(t.root, start, true) + l, mid2, _ := t.split(r, stop, true) - span := join(mid1, join(l, mid2, true, &t), true, &t) + span := (&t).join(mid1, (&t).join(l, mid2, true), true) span.traverse(order, 0, func(n *node[T], _ int) bool { return visitFn(n.item) @@ -396,25 +396,23 @@ func (t Tree[T]) Visit(start, stop T, visitFn func(item T) bool) { // Clone, deep cloning of the tree structure. func (t Tree[T]) Clone() Tree[T] { if t.root != nil { - t.root = t.root.clone(t) + t.root = t.clone(t.root) } return t } // clone rec-descent -// -// The parameter t is needed to access the compare function. -func (n *node[T]) clone(t Tree[T]) *node[T] { +func (t *Tree[T]) clone(n *node[T]) *node[T] { n = n.copyNode() if n.left != nil { - n.left = n.left.clone(t) + n.left = t.clone(n.left) } if n.right != nil { - n.right = n.right.clone(t) + n.right = t.clone(n.right) } - n.recalc(&t) + t.recalc(n) return n } diff --git a/treap.go b/treap.go index 8da20c2..b97f1e6 100644 --- a/treap.go +++ b/treap.go @@ -49,7 +49,7 @@ func NewTree[T any](cmp func(a, b T) (ll, rr, lr, rl int), items ...T) Tree[T] { // mutable insert for i := range items { - t.root = t.root.insert(t.makeNode(items[i]), false, &t) + t.root = t.insert(t.root, t.makeNode(items[i]), false) } return t @@ -57,11 +57,11 @@ func NewTree[T any](cmp func(a, b T) (ll, rr, lr, rl int), items ...T) Tree[T] { // makeNode, create new node with item and random priority. // The parameter t is needed to access the compare function. -func (t Tree[T]) makeNode(item T) *node[T] { +func (t *Tree[T]) makeNode(item T) *node[T] { n := new(node[T]) n.item = item n.prio = rand.Uint32() - n.recalc(&t) // initial calculation of finger pointers... + t.recalc(n) // initial calculation of finger pointers... return n } @@ -76,7 +76,7 @@ func (n *node[T]) copyNode() *node[T] { // If an element is a duplicate, it replaces the previous element. func (t Tree[T]) Insert(items ...T) Tree[T] { for i := range items { - t.root = t.root.insert(t.makeNode(items[i]), true, &t) + t.root = t.insert(t.root, t.makeNode(items[i]), true) } return t @@ -86,14 +86,12 @@ func (t Tree[T]) Insert(items ...T) Tree[T] { // If the original tree does not need to be preserved then this is much faster than the immutable insert. func (t *Tree[T]) InsertMutable(items ...T) { for i := range items { - t.root = t.root.insert(t.makeNode(items[i]), false, t) + t.root = t.insert(t.root, t.makeNode(items[i]), false) } } // insert into tree, changing nodes are copied, new treap is returned, old treap is modified if immutable is false. -// -// The parameter t is needed to access the compare function. -func (n *node[T]) insert(m *node[T], immutable bool, t *Tree[T]) *node[T] { +func (t *Tree[T]) insert(n, m *node[T], immutable bool) *node[T] { if n == nil { return m } @@ -112,11 +110,11 @@ func (n *node[T]) insert(m *node[T], immutable bool, t *Tree[T]) *node[T] { // / // l // - l, dupe, r := n.split(m.item, immutable, t) + l, dupe, r := t.split(n, m.item, immutable) // replace dupe with m. m has same key but different prio than dupe, a join() is required if dupe != nil { - return join(l, join(m, r, immutable, t), immutable, t) + return t.join(l, t.join(m, r, immutable), immutable) } // no duplicate, take m as new root @@ -126,14 +124,14 @@ func (n *node[T]) insert(m *node[T], immutable bool, t *Tree[T]) *node[T] { // m // m.left, m.right = l, r - m.recalc(t) + t.recalc(m) return m } cmp := t.compare(m.item, n.item) if cmp == 0 { // replace duplicate item with m, but m has different prio, a join() is required - return join(n.left, join(m, n.right, immutable, t), immutable, t) + return t.join(n.left, t.join(m, n.right, immutable), immutable) } if immutable { @@ -142,14 +140,14 @@ func (n *node[T]) insert(m *node[T], immutable bool, t *Tree[T]) *node[T] { switch { case cmp < 0: // rec-descent - n.left = n.left.insert(m, immutable, t) + n.left = t.insert(n.left, m, immutable) // // R // m l r // l r // case cmp > 0: // rec-descent - n.right = n.right.insert(m, immutable, t) + n.right = t.insert(n.right, m, immutable) // // R // l r m @@ -157,15 +155,15 @@ func (n *node[T]) insert(m *node[T], immutable bool, t *Tree[T]) *node[T] { // } - n.recalc(t) // node has changed, recalc + t.recalc(n) // node has changed, recalc return n } // Delete removes an item if it exists, returns the new tree and true, false if not found. func (t Tree[T]) Delete(item T) (Tree[T], bool) { // split/join must be immutable - l, m, r := t.root.split(item, true, &t) - t.root = join(l, r, true, &t) + l, m, r := t.split(t.root, item, true) + t.root = (&t).join(l, r, true) ok := m != nil return t, ok @@ -174,8 +172,8 @@ func (t Tree[T]) Delete(item T) (Tree[T], bool) { // DeleteMutable removes an item from tree, returns true if it exists, false otherwise. // If the original tree does not need to be preserved then this is much faster than the immutable delete. func (t *Tree[T]) DeleteMutable(item T) bool { - l, m, r := t.root.split(item, false, t) - t.root = join(l, r, false, t) + l, m, r := t.split(t.root, item, false) + t.root = t.join(l, r, false) return m != nil } @@ -188,25 +186,23 @@ func (t *Tree[T]) DeleteMutable(item T) bool { // To create very large trees, it may be time-saving to slice the input data into chunks, // fan out for creation and combine the generated subtrees with non-immutable unions. func (t Tree[T]) Union(other Tree[T], overwrite bool, immutable bool) Tree[T] { - t.root = t.root.union(other.root, overwrite, immutable, &t) + t.root = t.union(t.root, other.root, overwrite, immutable) return t } // union combines to treaps. -// -// The parameter t is needed to access the compare function. -func (n *node[T]) union(b *node[T], overwrite bool, immutable bool, t *Tree[T]) *node[T] { +func (t *Tree[T]) union(n, m *node[T], overwrite bool, immutable bool) *node[T] { // recursion stop condition if n == nil { - return b + return m } - if b == nil { + if m == nil { return n } // swap treaps if needed, treap with higher prio remains as new root - if n.prio < b.prio { - n, b = b, n + if n.prio < m.prio { + n, m = m, n overwrite = !overwrite } @@ -216,7 +212,7 @@ func (n *node[T]) union(b *node[T], overwrite bool, immutable bool, t *Tree[T]) } // the treap with the lower priority is split with the root key in the treap with the higher priority - l, dupe, r := b.split(n.item, immutable, t) + l, dupe, r := t.split(m, n.item, immutable) // the treaps may have duplicate items if overwrite && dupe != nil { @@ -224,9 +220,9 @@ func (n *node[T]) union(b *node[T], overwrite bool, immutable bool, t *Tree[T]) } // rec-descent - n.left = n.left.union(l, overwrite, immutable, t) - n.right = n.right.union(r, overwrite, immutable, t) - n.recalc(t) + n.left = t.union(n.left, l, overwrite, immutable) + n.right = t.union(n.right, r, overwrite, immutable) + t.recalc(n) return n } @@ -235,9 +231,7 @@ func (n *node[T]) union(b *node[T], overwrite bool, immutable bool, t *Tree[T]) // and greater-than the provided item (BST key). The resulting nodes are // properly formed treaps or nil. // If the split must be immutable, first copy concerned nodes. -// -// The parameter t is needed to access the compare function. -func (n *node[T]) split(key T, immutable bool, t *Tree[T]) (left, mid, right *node[T]) { +func (t *Tree[T]) split(n *node[T], key T, immutable bool) (left, mid, right *node[T]) { // recursion stop condition if n == nil { return nil, nil, nil @@ -249,31 +243,31 @@ func (n *node[T]) split(key T, immutable bool, t *Tree[T]) (left, mid, right *no switch cmp := t.compare(n.item, key); { case cmp < 0: - l, m, r := n.right.split(key, immutable, t) + l, m, r := t.split(n.right, key, immutable) n.right = l - n.recalc(t) // node has changed, recalc + t.recalc(n) // node has changed, recalc return n, m, r // // (k) // R - // l r ==> (R.r, m, r) = R.r.split(k) + // l r ==> (R.r, m, r) = split(R.r, k) // l r // case cmp > 0: - l, m, r := n.left.split(key, immutable, t) + l, m, r := t.split(n.left, key, immutable) n.left = r - n.recalc(t) // node has changed, recalc + t.recalc(n) // node has changed, recalc return l, m, n // // (k) // R - // l r ==> (l, m, R.l) = R.l.split(k) + // l r ==> (l, m, R.l) = split(R.l, k) // l r // default: l, r := n.left, n.right n.left, n.right = nil, nil - n.recalc(t) // node has changed, recalc + t.recalc(n) // node has changed, recalc return l, n, r // // (k) @@ -363,13 +357,11 @@ func (t Tree[T]) Find(item T) (result T, ok bool) { // tree.CoverLCP("2001:7c0:3100::/40") returns "2000::/3", true // func (t Tree[T]) CoverLCP(item T) (result T, ok bool) { - return t.root.lcp(item, &t) + return t.lcp(t.root, item) } // lcp rec-descent. -// -// The parameter t is needed to access the compare function. -func (n *node[T]) lcp(item T, t *Tree[T]) (result T, ok bool) { +func (t *Tree[T]) lcp(n *node[T], item T) (result T, ok bool) { if n == nil { return } @@ -382,25 +374,25 @@ func (n *node[T]) lcp(item T, t *Tree[T]) (result T, ok bool) { switch cmp := t.compare(n.item, item); { case cmp > 0: // left rec-descent - return n.left.lcp(item, t) + return t.lcp(n.left, item) case cmp == 0: // equality is always the shortest containing hull return n.item, true } // right backtracking - result, ok = n.right.lcp(item, t) + result, ok = t.lcp(n.right, item) if ok { return result, ok } // not found in right subtree, try this node - if t.covers(n.item, item) { + if t.cmpCovers(n.item, item) { return n.item, true } // left rec-descent - return n.left.lcp(item, t) + return t.lcp(n.left, item) } // CoverSCP returns the interval with the shortest-common-prefix that covers the item. @@ -440,13 +432,11 @@ func (n *node[T]) lcp(item T, t *Tree[T]) (result T, ok bool) { // tree.CoverSCP(ival{6,9}) returns ival{}, false // func (t Tree[T]) CoverSCP(item T) (result T, ok bool) { - return t.root.scp(item, &t) + return t.scp(t.root, item) } // scp rec-descent -// -// The parameter t is needed to access the compare function. -func (n *node[T]) scp(item T, t *Tree[T]) (result T, ok bool) { +func (t *Tree[T]) scp(n *node[T], item T) (result T, ok bool) { if n == nil { return } @@ -457,29 +447,29 @@ func (n *node[T]) scp(item T, t *Tree[T]) (result T, ok bool) { } // left backtracking - if result, ok = n.left.scp(item, t); ok { + if result, ok = t.scp(n.left, item); ok { return result, ok } // this item - if t.covers(n.item, item) { + if t.cmpCovers(n.item, item) { return n.item, true } // right rec-descent - return n.right.scp(item, t) + return t.scp(n.right, item) } // Covers returns all intervals that cover the item. // The returned intervals are in sorted order. func (t Tree[T]) Covers(item T) []T { - return t.root.covers(item, &t) + return t.covers(t.root, item) } // covers rec-descent // // The parameter t is needed to access the compare function. -func (n *node[T]) covers(item T, t *Tree[T]) (result []T) { +func (t *Tree[T]) covers(n *node[T], item T) (result []T) { if n == nil { return } @@ -490,27 +480,25 @@ func (n *node[T]) covers(item T, t *Tree[T]) (result []T) { } // in-order traversal for supersets, recursive call to left tree - result = append(result, n.left.covers(item, t)...) + result = append(result, t.covers(n.left, item)...) // n.item covers item - if t.covers(n.item, item) { + if t.cmpCovers(n.item, item) { result = append(result, n.item) } // recursive call to right tree - return append(result, n.right.covers(item, t)...) + return append(result, t.covers(n.right, item)...) } // CoveredBy returns all intervals that are covered by item. // The returned intervals are in sorted order. func (t Tree[T]) CoveredBy(item T) []T { - return t.root.coveredBy(item, &t) + return t.coveredBy(t.root, item) } // coveredBy rec-descent -// -// The parameter t is needed to access the compare function. -func (n *node[T]) coveredBy(item T, t *Tree[T]) (result []T) { +func (t *Tree[T]) coveredBy(n *node[T], item T) (result []T) { if n == nil { return } @@ -521,26 +509,24 @@ func (n *node[T]) coveredBy(item T, t *Tree[T]) (result []T) { } // in-order traversal for subsets, recursive call to left tree - result = append(result, n.left.coveredBy(item, t)...) + result = append(result, t.coveredBy(n.left, item)...) // item covers n.item - if t.covers(item, n.item) { + if t.cmpCovers(item, n.item) { result = append(result, n.item) } // recursive call to right tree - return append(result, n.right.coveredBy(item, t)...) + return append(result, t.coveredBy(n.right, item)...) } // Intersects returns true if any interval intersects item. func (t Tree[T]) Intersects(item T) bool { - return t.root.intersects(item, &t) + return t.isects(t.root, item) } -// intersetcs rec-descent -// -// The parameter t is needed to access the compare function. -func (n *node[T]) intersects(item T, t *Tree[T]) bool { +// intersects rec-descent +func (t *Tree[T]) isects(n *node[T], item T) bool { if n == nil { return false } @@ -551,29 +537,27 @@ func (n *node[T]) intersects(item T, t *Tree[T]) bool { } // recursive call to left tree - if n.left.intersects(item, t) { + if t.isects(n.left, item) { return true } // this n.item - if t.intersects(n.item, item) { + if t.cmpIntersects(n.item, item) { return true } // recursive call to right tree - return n.right.intersects(item, t) + return t.isects(n.right, item) } // Intersections returns all intervals that intersect with item. // The returned intervals are in sorted order. func (t Tree[T]) Intersections(item T) []T { - return t.root.isections(item, &t) + return t.isections(t.root, item) } // isections rec-descent -// -// The parameter t is needed to access the compare function. -func (n *node[T]) isections(item T, t *Tree[T]) (result []T) { +func (t *Tree[T]) isections(n *node[T], item T) (result []T) { if n == nil { return } @@ -584,15 +568,15 @@ func (n *node[T]) isections(item T, t *Tree[T]) (result []T) { } // in-order traversal for intersections, recursive call to left tree - result = append(result, n.left.isections(item, t)...) + result = append(result, t.isections(n.left, item)...) // this n.item - if t.intersects(n.item, item) { + if t.cmpIntersects(n.item, item) { result = append(result, n.item) } // recursive call to right tree - return append(result, n.right.isections(item, t)...) + return append(result, t.isections(n.right, item)...) } // Precedes returns all intervals that precedes the item. @@ -610,14 +594,12 @@ func (n *node[T]) isections(item T, t *Tree[T]) (result []T) { // Precedes(item) => [D, B] // func (t Tree[T]) Precedes(item T) []T { - l, _, _ := t.root.split(item, true, &t) - return l.precedes(item, &t) + l, _, _ := t.split(t.root, item, true) + return t.precedes(l, item) } // precedes rec-desent -// -// The parameter t is needed to access the compare function. -func (n *node[T]) precedes(item T, t *Tree[T]) (result []T) { +func (t *Tree[T]) precedes(n *node[T], item T) (result []T) { if n == nil { return } @@ -628,15 +610,15 @@ func (n *node[T]) precedes(item T, t *Tree[T]) (result []T) { } // recursive call to ... - result = append(result, n.left.precedes(item, t)...) + result = append(result, t.precedes(n.left, item)...) // this n.item - if !t.intersects(n.item, item) { + if !t.cmpIntersects(n.item, item) { result = append(result, n.item) } // recursive call to right tree - return append(result, n.right.precedes(item, t)...) + return append(result, t.precedes(n.right, item)...) } // PrecededBy returns all intervals that are preceded by the item. @@ -654,42 +636,40 @@ func (n *node[T]) precedes(item T, t *Tree[T]) (result []T) { // PrecededBy(item) => [B, D] // func (t Tree[T]) PrecededBy(item T) []T { - _, _, r := t.root.split(item, true, &t) - return r.precededby(item, &t) + _, _, r := t.split(t.root, item, true) + return t.precededBy(r, item) } // precededBy rec-desent // // The parameter t is needed to access the compare function. -func (n *node[T]) precededby(item T, t *Tree[T]) (result []T) { +func (t *Tree[T]) precededBy(n *node[T], item T) (result []T) { if n == nil { return } // skip some left wings if n.left != nil { - if t.intersects(item, n.item) { + if t.cmpIntersects(item, n.item) { // skip left, proceed instead with left.right - result = append(result, n.left.right.precededby(item, t)...) + result = append(result, t.precededBy(n.left.right, item)...) } else { - result = append(result, n.left.precededby(item, t)...) + result = append(result, t.precededBy(n.left, item)...) } } // this n.item - if !t.intersects(n.item, item) { + if !t.cmpIntersects(n.item, item) { result = append(result, n.item) } // recursive call to right - return append(result, n.right.precededby(item, t)...) + return append(result, t.precededBy(n.right, item)...) } // join combines two disjunct treaps. All nodes in treap n have keys <= that of treap m // for this algorithm to work correctly. If the join must be immutable, first copy concerned nodes. -// -// The parameter t is needed to access the compare function. -func join[T any](n, m *node[T], immutable bool, t *Tree[T]) *node[T] { +func (t *Tree[T]) join(n, m *node[T], immutable bool) *node[T] { // recursion stop condition if n == nil { return m @@ -706,8 +686,8 @@ func join[T any](n, m *node[T], immutable bool, t *Tree[T]) *node[T] { if immutable { n = n.copyNode() } - n.right = join(n.right, m, immutable, t) - n.recalc(t) + n.right = t.join(n.right, m, immutable) + t.recalc(n) return n } else { // m @@ -717,8 +697,8 @@ func join[T any](n, m *node[T], immutable bool, t *Tree[T]) *node[T] { if immutable { m = m.copyNode() } - m.left = join(n, m.left, immutable, t) - m.recalc(t) + m.left = t.join(n, m.left, immutable) + t.recalc(m) return m } } @@ -727,7 +707,7 @@ func join[T any](n, m *node[T], immutable bool, t *Tree[T]) *node[T] { // Only one level deeper must be considered. The treap datastructure is very easy to augment. // // The parameter t is needed to access the compare function. -func (n *node[T]) recalc(t *Tree[T]) { +func (t *Tree[T]) recalc(n *node[T]) { if n == nil { return }