-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
112 lines (101 loc) · 4.58 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from project import twitter_api as TAPI
from project import tw_elements as TE
from project import results_handler as RH
from project import cache as TC
import project.News_weights as Nw
from project import tf_text as TT
from project import Predictor_Network as PN
import time
from datetime import datetime
# Example with elonmusk:
name = ["elonmusk", "Elon Musk"]
inputs = [
f"Show latest feed and tweets of {name[1]} (LIVE)",
f"Show latest feed and tweets of {name[1]} (FROM CACHE)",
f"Get all from the cache and build training datasets",
f"Use Tensorflow to predict {name[1]}'s possible next Tweet",
f"Start an infinite loop that add tweets to the cache every hour",
f"Create the data for News readership numbers (takes a long time)",
f"Call the predictor NN (unfortunatly unfinished)"
]
for i, v in enumerate(inputs):
print(f"{i+1}: {v}")
choice = None
while choice not in range(1, len(inputs)+1):
try:
choice = int(input(f"Please input one of the options [1-{len(inputs)}]: "))
except ValueError:
choice = None
print()
if choice in [1, 2]:
cache = TC.cache(status=choice, username=name[0])
# Get the twitter feed of the specified user, as well as his last tweets
twitter_feed = TAPI.get_feed(name[0], cache, show_name=name[1], get_replies=False, order_by_influence=False)
print(f"Getting {name[1]}'s last tweets...")
last_tweets = TAPI.get_user_interactions(name[0], 0, get_replies=True, order_by_influence=True, n=20, cache=cache)
# Sort the feed tweets and keep the one we want before normalising and computing influence score
twitter_feed.sort()
twitter_feed = twitter_feed[0:20]
# Switch this to compute influence again (based on news article that might have been written since then)
compute_influence_again = True
if compute_influence_again:
for i, tweet in enumerate(last_tweets):
print(f"Computing news influence of last tweets... ({i+1}/{len(last_tweets)})", end="\r")
tweet.compute_influence(include_news=True, include_google=False)
print()
for i, tweet in enumerate(twitter_feed):
print(f"Computing news influence of feed tweets... ({i+1}/{len(twitter_feed)})", end="\r")
tweet.compute_influence(include_news=True, include_google=False)
print()
last_tweets = TE.normalise_scores(last_tweets)
twitter_feed = TE.normalise_scores(twitter_feed)
# Sort the tweets after normalisation
last_tweets.sort()
# Save the results in a webpage, and open it
res = RH.results(name[0], show_name=name[1])
res.add_tweets(twitter_feed, "feed", n=20)
res.add_tweets(last_tweets, "latest", n=20)
res.show()
if choice == 3:
# These functions should be useful to build training datasets
cache = TC.cache(username=name[0])
latest, feed = cache.get_all_cached()
if (latest, feed) != (None, None):
# Build a dict {tweet: feed just before said tweet}
data = cache.split_latest_feed(latest, feed)
print(len(data), len(latest), len(feed))
# Set interacted=True for tweets for which James interacted (replied to, liked, retweeted)
TE.feed.flag_interact(feed, latest)
i = sum([t.interacted for d, t in feed.items()])
print(f"{name[1]} interacted with {i} of {len(feed)} tweets in his feed")
if choice == 4:
char_base = input("Base prediction on words (on characters otherwise) ? [Y/n]: ").lower() == "n"
do_train = input("Use a pre-trained model to do the prediction (train a new one otherwise) ? [Y/n]: ").lower() == "n"
start = input("By default (just press ENTER), predicted sentence starts with \"I have been\" \nInput a string of 2-6 words to change it: ")
print()
n = 280 if char_base else 50
if len(start) < 5:
start = "I have been "
if do_train:
latest, feed = TC.cache(0, username=name[0]).get_all_cached()
tweets = list(latest.values())
print(f"Training model based on text of {len(tweets)} tweets...")
text = TT.generate_text(start, tweets=tweets, epochs=50, n_chars=n, train_again=do_train, char_base=char_base)
else:
text = TT.generate_text(start, n_chars=n, train_again=False, temperature=1.0, char_base=char_base)
print(text)
cache_loop = TC.cache(status=1, username=name[0])
while choice == 5:
print(datetime.now().strftime('%d/%m/%Y %H:%M'))
t0 = time.time()
print("Downloading new results for the cache...")
last_tweets = TAPI.get_user_interactions(name[0], 0, get_replies=True, order_by_influence=False, cache=cache_loop)
twitter_feed = TAPI.get_feed(name[0], cache_loop, show_name=name[1], get_replies=False, order_by_influence=False)
print("Done, sleeping 1h")
dt = time.time()-t0
time.sleep(3600 - dt)
if choice == 6:
Nw.create(True, False)
if choice == 7:
tweet_list = TC.cache.get_all_cached(cache_loop)
PN.create_model(tweet_list, tweet_list, train=True, predict=True)