-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathproblem221.rb
executable file
·57 lines (50 loc) · 1.45 KB
/
problem221.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# We shall call a positive integer A an "Alexandrian integer", if there exist integers p, q, r such that:
# A = p · q · r and A^(-1)=p^(-1)+q^(-1)+r^(-1)
# For example, 630 is an Alexandrian integer (p = 5, q = ?7, r = ?18). In fact, 630 is the 6^(th) Alexandrian integer, the first 6 Alexandrian integers being: 6, 42, 120, 156, 420 and 630.
# Find the 150000^(th) Alexandrian integer.
#can be reduced to finding p>=q>0 such that r=(pq-1)/(p+q) is integer (and then the Alexandrian number is pqr).
#This can be reduced to the following: given p, find all the q's such that (p+q) divides p^2+1
target = 150000
max = 200000
# target = 6
# max = 100
nums = []
p = 1
while nums.length < max
p +=1
t = p**2 + 1
(2..p).each do |k|
if t % k == 0
q = (t / k) - p
r = (p*q-1) / (p+q)
# puts "p=#{p}, q=#{q}, r=#{r}, pqr = #{p*q*r}"
nums << p*q*r
nums.uniq!
puts nums.length
end
end
end
# File.open("temp","w"){|file| file.write(nums.inspect)}
puts nums.uniq.sort[target-1]
# puts nums.uniq.sort.inspect
# count = 0
# p,q=2,1
# nums = []
# while nums.length < max
# # while count < max
# if (p*q-1) % (p+q) == 0
# r = (p*q-1) / (p+q)
# # puts "p=#{p}, q=#{q}, r=#{r}"
# nums << p*q*r
# puts nums.length
# # count +=1
# # puts count
# end
# q += 1
# if q>p
# q = 1
# p += 1
# end
# end
# File.open("temp","w"){|file| file.write(nums.inspect)}
# puts nums.sort[target-1]