-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdataflow_preprocess.py
242 lines (205 loc) · 8.56 KB
/
dataflow_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import datetime
import os
import random
import subprocess
import sys
import outbrain_transform
import path_constants
import apache_beam as beam
import tensorflow as tf
from tensorflow_transform import coders
from tensorflow_transform.beam import impl as tft
from tensorflow_transform.beam import tft_beam_io
from tensorflow_transform.tf_metadata import dataset_metadata
def _default_project():
get_project = [
'gcloud', 'config', 'list', 'project', '--format=value(core.project)'
]
with open(os.devnull, 'w') as dev_null:
return subprocess.check_output(get_project, stderr=dev_null).strip()
def parse_arguments(argv):
"""Parse command line arguments.
Args:
argv: list of command line arguments including program name.
Returns:
The parsed arguments as returned by argparse.ArgumentParser.
"""
parser = argparse.ArgumentParser(
description='Runs Transformation on the Outbrain Click Prediction model data.')
parser.add_argument(
'--project_id', help='The project to which the job will be submitted.')
parser.add_argument(
'--cloud', action='store_true', help='Run preprocessing on the cloud.')
parser.add_argument(
'--frequency_threshold',
type=int,
default=100,
help='The frequency threshold below which categorical values are '
'ignored.')
parser.add_argument(
'--training_data',
required=True,
help='Data to analyze and encode as training features.')
parser.add_argument(
'--eval_data',
required=True,
help='Data to encode as evaluation features.')
parser.add_argument(
'--predict_data', help='Data to encode as prediction features.')
parser.add_argument(
'--output_dir',
default=None,
required=True,
help=('Google Cloud Storage or Local directory in which '
'to place outputs.'))
args, _ = parser.parse_known_args(args=argv[1:])
if args.cloud and not args.project_id:
args.project_id = _default_project()
return args
# TODO(b/33688220) should the transform functions take shuffle as an optional
# argument instead?
@beam.ptransform_fn
def _Shuffle(pcoll): # pylint: disable=invalid-name
return (pcoll
| 'PairWithRandom' >> beam.Map(lambda x: (random.random(), x))
| 'GroupByRandom' >> beam.GroupByKey()
| 'DropRandom' >> beam.FlatMap(lambda (k, vs): vs))
def preprocess(pipeline, training_data, eval_data, predict_data, output_dir,
frequency_threshold):
"""Run pre-processing step as a pipeline.
Args:
pipeline: beam pipeline
training_data: file paths to input csv files.
eval_data: file paths to input csv files.
predict_data: file paths to input csv files.
output_dir: file path to where to write all the output files.
frequency_threshold: frequency threshold to use for categorical values.
"""
# 1) The schema can be either defined in-memory or read from a configuration
# file, in this case we are creating the schema in-memory.
input_schema = outbrain_transform.make_input_schema()
# 2) Configure the coder to map the source file column names to a dictionary
# of key -> tensor_proto with the appropiate type derived from the
# input_schema.
coder = outbrain_transform.make_csv_coder(input_schema)
# 3) Read from text using the coder.
train_data = (
pipeline
| 'ReadTrainingData' >> beam.io.ReadFromText(training_data)
| 'ParseTrainingCsv' >> beam.Map(coder.decode))
evaluate_data = (
pipeline
| 'ReadEvalData' >> beam.io.ReadFromText(eval_data)
| 'ParseEvalCsv' >> beam.Map(coder.decode))
input_metadata = dataset_metadata.DatasetMetadata(schema=input_schema)
_ = (input_metadata
| 'WriteInputMetadata' >> tft_beam_io.WriteMetadata(
os.path.join(output_dir, path_constants.RAW_METADATA_DIR),
pipeline=pipeline))
preprocessing_fn = outbrain_transform.make_preprocessing_fn()
(train_dataset, train_metadata), transform_fn = (
(train_data, input_metadata)
| 'AnalyzeAndTransform' >> tft.AnalyzeAndTransformDataset(
preprocessing_fn))
# WriteTransformFn writes transform_fn and metadata to fixed subdirectories
# of output_dir, which are given by path_constants.TRANSFORM_FN_DIR and
# path_constants.TRANSFORMED_METADATA_DIR.
_ = (transform_fn | 'WriteTransformFn' >> tft_beam_io.WriteTransformFn(output_dir))
(evaluate_dataset, evaluate_metadata) = (
((evaluate_data, input_metadata), transform_fn)
| 'TransformEval' >> tft.TransformDataset())
train_coder = coders.ExampleProtoCoder(train_metadata.schema)
_ = (train_dataset
| 'SerializeTrainExamples' >> beam.Map(train_coder.encode)
#| 'ShuffleTraining' >> _Shuffle() # pylint: disable=no-value-for-parameter
| 'WriteTraining'
>> beam.io.WriteToTFRecord(
os.path.join(output_dir,
path_constants.TRANSFORMED_TRAIN_DATA_FILE_PREFIX),
file_name_suffix='.tfrecord.gz'))
evaluate_coder = coders.ExampleProtoCoder(evaluate_metadata.schema)
_ = (evaluate_dataset
| 'SerializeEvalExamples' >> beam.Map(evaluate_coder.encode)
| 'WriteEval'
>> beam.io.WriteToTFRecord(
os.path.join(output_dir,
path_constants.TRANSFORMED_EVAL_DATA_FILE_PREFIX),
file_name_suffix='.tfrecord.gz'))
if predict_data:
predict_mode = tf.contrib.learn.ModeKeys.INFER
predict_schema = outbrain_transform.make_input_schema(mode=predict_mode)
csv_coder = outbrain_transform.make_csv_coder(predict_schema, mode=predict_mode)
predict_coder = coders.ExampleProtoCoder(predict_schema)
serialized_examples = (
pipeline
| 'ReadPredictData' >> beam.io.ReadFromText(predict_data)
| 'ParsePredictCsv' >> beam.Map(csv_coder.decode)
# TODO(b/35194257) Obviate the need for this explicit serialization.
| 'EncodePredictData' >> beam.Map(predict_coder.encode))
_ = (serialized_examples
| 'WritePredictDataAsTFRecord' >> beam.io.WriteToTFRecord(
os.path.join(output_dir,
path_constants.TRANSFORMED_PREDICT_DATA_FILE_PREFIX),
file_name_suffix='.tfrecord.gz'))
_ = (serialized_examples
| 'EncodePredictAsB64Json' >> beam.Map(_encode_as_b64_json)
| 'WritePredictDataAsText' >> beam.io.WriteToText(
os.path.join(output_dir,
path_constants.TRANSFORMED_PREDICT_DATA_FILE_PREFIX),
file_name_suffix='.txt'))
def _encode_as_b64_json(serialized_example):
import base64 # pylint: disable=g-import-not-at-top
import json # pylint: disable=g-import-not-at-top
return json.dumps({'b64': base64.b64encode(serialized_example)})
def main(argv=None):
"""Run Preprocessing as a Dataflow."""
args = parse_arguments(sys.argv if argv is None else argv)
if args.cloud:
pipeline_name = 'DataflowRunner'
options = {
'job_name': ('outbrain-transform-{}'.format(
datetime.datetime.now().strftime('%Y%m%d%H%M%S'))),
'temp_location':
os.path.join(args.output_dir, 'tmp'),
'project':
args.project_id,
'max_num_workers':
1000,
'setup_file':
os.path.abspath(os.path.join(
os.path.dirname(__file__),
'setup.py')),
}
pipeline_options = beam.pipeline.PipelineOptions(flags=[], **options)
else:
pipeline_name = 'DirectRunner'
pipeline_options = None
temp_dir = os.path.join(args.output_dir, 'tmp')
with beam.Pipeline(pipeline_name, options=pipeline_options) as p:
with tft.Context(temp_dir=temp_dir):
preprocess(
pipeline=p,
training_data=args.training_data,
eval_data=args.eval_data,
predict_data=args.predict_data,
output_dir=args.output_dir,
frequency_threshold=args.frequency_threshold)
if __name__ == '__main__':
main()