-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
335 lines (286 loc) · 15.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import math
import os
import re
import pickle
import random
import torch.nn as nn
import numpy as np
import torch
from torch.utils.data import Dataset
from tqdm import tqdm, trange
import sys
from pytorch_pretrained_bert.modeling import BertConfig
from pytorch_pretrained_bert.tokenization import BertTokenizer
from classier_train import textCNN, classfier_sentiment
from classier_test_input import BertLSTM, sentence_style_cls
def caption_process(caption):
caption = caption.replace("\n", "").replace("\"", "").replace("\r", "").replace("\t", "").lower()
caption = re.sub(r'[^\x00-\x7F]', '', caption)
caption = caption.replace(" .", ".")
return caption
class ClipCocoDataset(Dataset):
def __len__(self) -> int:
return self.prefixes.shape[0]
def pad_tokens(self, item: int):
tokens = self.captions_tokens[item]
padding = self.max_seq_len - tokens.shape[0]
if padding > 0:
tokens = torch.cat((tokens, torch.zeros(padding, dtype=torch.int64) - 1))
# tokens = torch.cat((tokens, torch.ones(padding, dtype=torch.int64)*50256))
self.captions_tokens[item] = tokens
elif padding < 0:
tokens = tokens[:self.max_seq_len]
self.captions_tokens[item] = tokens
mask = tokens.ge(0) # mask is zero where we out of sequence
tokens[~mask] = self.tokenizer.convert_tokens_to_ids([self.tokenizer.pad_token])[0]
mask = mask.float()
mask = torch.cat((torch.ones(self.prefix_length), mask), dim=0) # adding prefix mask
return tokens, mask
def __getitem__(self, item: int):
prefix = self.prefixes[item]
# prefix = prefix / prefix.norm(2, -1)
if self.train_or_test == 'train':
tokens, mask = self.pad_tokens(item)
style_token = self.style_tokens[item]
match_label = self.match_labels[item]
return tokens, mask, prefix, style_token, match_label
if self.train_or_test == 'test':
style = self.style[item]
caption = '\n'.join(self.captions[item])
# caption = self.captions[item]
imgpath = self.imgpath[item]
idx = self.idxs[item]
return prefix, style, caption, imgpath, idx
def __init__(self, args, data_path, train_or_test='train', tokenizer=None):
self.train_or_test = train_or_test
self.tokenizer = tokenizer
self.tokenizer.pad_token = '[PAD]'
self.prefix_length = args.prefix_length # 10 vs 4
with open(data_path, 'rb') as f:
all_data = pickle.load(f)
# 数据处理
self.prefixes = [] # num * 768
captions_raw = []
self.style = []
self.match_labels = []
self.imgpath = []
self.idxs = []
if args.code_0 == " factual" or args.code_1 == " factual":
nagetive_map = {
"positive": "negative",
"negative": "positive",
"humorous": " factual",
"romantic": " factual",
"factual": " "+args.teststyle}
else:
nagetive_map = {
"positive": "negative",
"negative": "positive",
"humorous": " romantic",
"romantic": " humorous"}
for i in range(len((all_data))):
if train_or_test == "train" or all_data[i]['style'] == args.teststyle:
# 图像
image_path = all_data[i]['filename']
if os.path.exists(image_path):
filename = image_path
if os.path.exists(f"/home/liwc/wxp/dataset/MSCOCO/train2014/" + image_path):
filename = f"/home/liwc/wxp/dataset/MSCOCO/train2014/" + image_path
elif os.path.exists(f"/home/liwc/wxp/dataset/MSCOCO/val2014/" + image_path):
filename = f"/home/liwc/wxp/dataset/MSCOCO/val2014/" + image_path
# 正样本
self.prefixes.append(all_data[i]['prefix'])
# captions_raw.append("this image shows " + all_data[i]['caption'])
captions_raw.append(all_data[i]['caption'])
if all_data[i]['style'] in ["positive", "negative"]:
self.style.append(all_data[i]['style'])
elif all_data[i]['style'] in ["humorous", "romantic", "factual"]:
self.style.append(" "+all_data[i]['style'])
self.match_labels.append(1)
self.imgpath.append(filename)
if train_or_test == "test":
self.idxs.append(all_data[i]['idx'])
if train_or_test == "train":
# 负样本-风格
self.prefixes.append(all_data[i]['prefix'])
# captions_raw.append("this image shows " + all_data[i]['caption'])
captions_raw.append(all_data[i]['caption'])
self.style.append(nagetive_map[all_data[i]['style']])
self.match_labels.append(0)
self.imgpath.append(filename)
self.prefixes = torch.cat(self.prefixes, dim=0)
self.captions = captions_raw
if train_or_test == "train":
if os.path.isfile(f"{data_path[:-4]}_tokens.pkl") and not args.overwrite_cache:
with open(f"{data_path[:-4]}_tokens.pkl", 'rb') as f:
self.captions_tokens, self.caption2embedding, self.max_seq_len, self.style_tokens = pickle.load(f)
else:
self.captions_tokens = []
self.caption2embedding = []
self.style_tokens = []
max_seq_len = 0
for i in range(len(captions_raw)):
self.captions_tokens.append(torch.tensor(self.tokenizer.encode(captions_raw[i]), dtype=torch.int64))
self.style_tokens.append(torch.tensor(self.tokenizer.encode(self.style[i])[0], dtype=torch.int64))
self.caption2embedding.append(i)
max_seq_len = max(max_seq_len, self.captions_tokens[-1].shape[0])
with open(f"{data_path[:-4]}_tokens.pkl", 'wb') as f:
pickle.dump([self.captions_tokens, self.caption2embedding, max_seq_len, self.style_tokens], f)
self.max_seq_len = args.max_length
class ClipCaptionModel(nn.Module):
def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor:
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)
def forward(self, tokens, prefix, mask):
embedding_text = self.gpt.transformer.wte(tokens)
prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size)
# T/F + style_embedding + prefix_projections + embedding_text
inputs_embeds1 = embedding_text[:, 0:1, :]
inputs_embeds2 = embedding_text[:, 1:, :]
embedding_cat = torch.cat((inputs_embeds1, prefix_projections, inputs_embeds2), 1)
# 标签
labels = tokens[:, 1:]
out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask, prefix_length=self.prefix_length)
return out
# gedi直接生成
def generate(self, prefix, args, tokenizer, style):
# 图像embedding batchsize*4*1024
prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size)
# positive/negative batchsize*1*1024
seq_a = torch.tensor([tokenizer.encode(style_pn)[0] for style_pn in style]).reshape(-1, 1).to(device=args.device, dtype=torch.int64)
embedding_text_style = self.gpt.transformer.wte(seq_a)
# cat batchsize*5*1024
embedding_cat = torch.cat((embedding_text_style, prefix_projections), dim=1)
# else
if args.class_bias is None:
args.class_bias = 0.0
generated_sequence = self.gpt.generate(input_ids=None,
pad_lens=None,
max_length=args.max_length-1,
do_sample=args.do_sample,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
repetition_penalty=args.repetition_penalty,
rep_penalty_scale=0,
pad_token_id=tokenizer.eos_token_id,
eos_token_ids=tokenizer.eos_token_id,
penalize_cond=args.penalize_cond,
gedi_model=None,
tokenizer=tokenizer,
disc_weight=0,
filter_p=args.filter_p,
target_p=args.target_p,
class_bias=args.class_bias,
attr_class=1,
code_0="false",
code_1="true",
prefix_sequence=embedding_cat)
return generated_sequence
def __init__(self, tokenizer, gpt, prefix_length, prefix_size):
super(ClipCaptionModel, self).__init__()
self.tokenizer = tokenizer
self.gpt = gpt
self.prefix_length = prefix_length
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) //2,
self.gpt_embedding_size * prefix_length))
class MLP(nn.Module):
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.model(x)
def __init__(self, sizes, bias=True, act=nn.Tanh):
super(MLP, self).__init__()
layers = []
for i in range(len(sizes) - 1):
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
if i < len(sizes) - 2:
layers.append(act())
self.model = nn.Sequential(*layers)
def noise_injection(x, variance=0.001, modality_offset=None, uniform_noise=False, dont_norm=False):
if variance == 0.0:
return x
std = math.sqrt(variance)
if not dont_norm:
x = torch.nn.functional.normalize(x, dim=1)
if uniform_noise:
# x = x + get_uniform_ball_noise(x.shape, radius=std)
print(1)
else:
x = x + (torch.randn(x.shape, device=x.device) * std) # todo by some conventions multivraiance noise should be devided by sqrt of dim
if modality_offset is not None:
x = x + modality_offset
return torch.nn.functional.normalize(x, dim=1)
def add_sep(batch, sep_id):
batch[0]
len_list = (batch[1].sum(dim=1) - batch[2].sum(dim=1)).tolist()
left_chunk = [x[:len_] for x,len_ in zip(batch[0],len_list)]
right_chunk= [x[len_:] for x,len_ in zip(batch[0],len_list)]
mid_chunk = [torch.Tensor(sep_id).type_as(x) for x in batch[0]]
tensor_list = [torch.cat((left,mid,right)) for (left,mid,right) in
zip(left_chunk, mid_chunk, right_chunk)]
return torch.stack(tensor_list)[:,:-1]
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def eval_ppl(out_txt_dir, desiered_style, ppl_out_path):
map_style_pplLM = {"romantic":"/home/liwc/wxp/refercode/GeDi_Final/PPL/LM_ro",
"humorous":"/home/liwc/wxp/refercode/GeDi_Final/PPL/LM_fu",
"positive":"/home/liwc/wxp/refercode/GeDi_Final/PPL/LM_pos",
"negative":"/home/liwc/wxp/refercode/GeDi_Final/PPL/LM_neg"}
os.system('ngram -ppl ' + out_txt_dir + ' -order 3 -lm '+ map_style_pplLM[desiered_style] + ' > ' + ppl_out_path)
with open(ppl_out_path, 'rb') as f:
while True:
line = f.readline()
line = line.decode('utf-8')
if not line:
break
last_line = line
tokens = last_line.split()
ppl = float(tokens[-3])
# ppl1 = float(tokens[-1])
return ppl
def eval_acc(out_txt_dir, teststyle, device, tokenizer, file_error_path):
with open(out_txt_dir, "r") as f:
captions = [line.strip() for line in f.readlines()]
acc = {"match":0, "total":0, "acc":0.0}
acc_map = {"factual":0, "positive":1, "negative":1, "romantic":1, "humorous":1}
# model_path_map = {"positive":'cls_pos_2', "negative":'cls_neg_2',
# "romantic":'cls_ro_2', "humorous":'cls_fu_2'}
if teststyle == "positive" or teststyle == "negative":
acc_model = textCNN(kernel_num=100, vocab_size=50257, kernel_size=[1, 2, 3], embed_dim=1024, dropout=0, class_num=2)
model_path = './classfier/cls_pos_2.pt' if teststyle == "positive" else './classfier/cls_neg_2.pt'
state_dict = torch.load(model_path, map_location="cpu")
acc_model.load_state_dict(state_dict)
acc_model = acc_model.to(device)
acc_model.eval()
elif teststyle == "romantic" or teststyle == "humorous" or teststyle == "factual":
config_path = './classfier/cls_fu_2/config.json' if teststyle == "humorous" else './classfier/cls_ro_2/config.json'
model_path = './classfier/cls_fu_2/pytorch_model.bin' if teststyle == "humorous" else './classfier/cls_ro_2/pytorch_model.bin'
# if True:
# config_path = "./classfier/" + model_path_map[teststyle] + "/config.json"
# model_path = "./classfier/" + model_path_map[teststyle] + "/pytorch_model.bin"
bert_config = BertConfig(config_path)
acc_model = BertLSTM(config=bert_config, num_labels=2, rnn_hidden_size=300, num_layers=2, bidirectional=True, dropout=0.2)
acc_model.load_state_dict(torch.load(model_path, map_location="cpu"))
acc_model = acc_model.to(device)
acc_model.eval()
acc_tokenizer = BertTokenizer.from_pretrained("/home/liwc/wxp/refercode/DataTestProcess/bert-base-uncased/vocab.txt", do_lower_case=True)
file_error = open(file_error_path, "w")
for generated_text in captions:
if teststyle == "positive" or teststyle == "negative":
predicted_label = classfier_sentiment(generated_text, acc_model, tokenizer, device)
elif teststyle == "romantic" or teststyle == "humorous" or teststyle == "factual":
# if True:
predicted_label = sentence_style_cls(generated_text, acc_tokenizer, 21, acc_model, device)
true_label = acc_map[teststyle]
if predicted_label == true_label:
acc["match"] = acc["match"] + 1
else:
# print(generated_text+"\t"+str(predicted_label.item())+"\t"+str(true_label))
file_error.write(generated_text+"\t"+str(predicted_label.item())+"\t"+str(true_label) + "\n")
acc["total"] = acc["total"] + 1
file_error.close()
acc["acc"] = acc["match"] / acc["total"]
return acc["acc"]