-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_guide.py
347 lines (290 loc) · 14.6 KB
/
generate_guide.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import argparse
import os
import torch
import numpy as np
import json
from transformers import GPT2Config, GPT2Tokenizer
import tqdm
from torch.utils.data import DataLoader
import clip
from clipscore.eval_clip import computer_clipscore_and_other
from modeling_gpt2 import GPT2LMHeadModel
from torch.autograd import Variable
from lib.config import cfg, cfg_from_file
import lib.utils as utils
from lib.dataset import RCStyleDataset_infer
from models.pure_transformer import PureT
from utils import ClipCaptionModel, eval_ppl, eval_acc
class vocab_gpt2puret():
def __init__(self, gpt_decoder, gpt_encoder, pure_decoder):
th = gpt_decoder[294]
th0 = th[0]
idx_aban = []
idx_value = [[], []]
for i in range(len(pure_decoder)):
x = pure_decoder[i]
if x in gpt_encoder and th0+x in gpt_encoder:
idx_value[0].append(gpt_encoder[x])
idx_value[1].append(gpt_encoder[th0+x])
elif x in gpt_encoder:
idx_value[0].append(gpt_encoder[x])
idx_value[1].append(gpt_encoder[x])
elif th0+x in gpt_encoder:
idx_value[0].append(gpt_encoder[th0+x])
idx_value[1].append(gpt_encoder[th0+x])
else:
idx_aban.append(i)
idx_value[0].append(0)
idx_value[1].append(0)
self.idx_aban = idx_aban
self.idx_value = idx_value
def logP_gpt2puret(self, logP_gpt):
logP_pureT0 = logP_gpt[:, self.idx_value[0]]
logP_pureT1 = logP_gpt[:, self.idx_value[1]]
logP_pureT = torch.where(logP_pureT0 >= logP_pureT1, logP_pureT0, logP_pureT1)
logP_pureT[:, self.idx_aban] -= 10000
return logP_pureT
def token_puret2gpt(self, token_puret, first):
token_puret = token_puret.tolist()
if first:
token_gpt = [self.idx_value[0][idx] for idx in token_puret]
else:
token_gpt = [self.idx_value[1][idx] for idx in token_puret]
return torch.tensor(token_gpt)
def decode_generate(model, kwargs, gedi_model, kwargs_gedi):
greedy_decode = kwargs['GREEDY_DECODE']
# image feature
att_feats = kwargs[cfg.PARAM.ATT_FEATS]
att_feats = model.backbone(att_feats)
att_feats = model.att_embed(att_feats)
gx, encoder_out = model.encoder(att_feats, None)
# base
batch_size = att_feats.size(0)
model.decoder.init_buffer(batch_size)
state = None
sents = Variable(torch.zeros((batch_size, cfg.MODEL.SEQ_LEN), dtype=torch.long).to(att_feats.device))
logprobs = Variable(torch.zeros(batch_size, cfg.MODEL.SEQ_LEN).to(att_feats.device))
wt = Variable(torch.zeros(batch_size, dtype=torch.long).to(att_feats.device))
unfinished = wt.eq(wt)
kwargs[cfg.PARAM.ATT_FEATS] = encoder_out
kwargs[cfg.PARAM.GLOBAL_FEAT] = gx
# gedi
code_0 = kwargs_gedi['code_0']
code_1 = kwargs_gedi['code_1']
nt_id = tokenizer.encode(code_0)[0]
pt_id = tokenizer.encode(code_1)[0]
disc_weight = kwargs_gedi['disc_weight']
prefix_sequence = kwargs_gedi['prefix']
# prompt
prefix_sequence = prefix_sequence / prefix_sequence.norm(2, -1, keepdim=True)
prefix_projections_gedi = gedi_model.clip_project(prefix_sequence).view(-1, gedi_model.prefix_length, gedi_model.gpt_embedding_size)
prefix_projections_gedi = torch.cat((prefix_projections_gedi, prefix_projections_gedi),dim=0)
# style
style = kwargs_gedi['style']
style_token = torch.tensor([tokenizer.encode(style_pn)[0] for style_pn in style]).reshape(-1, 1).to(device=next(model.parameters()).device,dtype=torch.int64)
weight = (style_token == pt_id).type_as(style_token).view(-1,1).to(next(model.parameters()).device)
seq_a = pt_id * weight + nt_id * (1-weight)
seq_b = nt_id * weight + pt_id * (1-weight)
seq_batched = torch.cat((seq_a,seq_b),dim=0)
embedding_text_style = gedi_model.gpt.transformer.wte(seq_batched)
seq_batched_embedding = torch.cat((embedding_text_style, prefix_projections_gedi),dim=1)
gedi_pad_lens = None
gedi_past = None
input_ids = torch.full((batch_size, 1), 50256, dtype=torch.long, device=next(model.parameters()).device)
vocab_transform = gedi_kwargs['vocab_transform']
# inference word by word
for t in range(cfg.MODEL.SEQ_LEN):
# base
kwargs[cfg.PARAM.WT] = wt
kwargs[cfg.PARAM.STATE] = state
logprobs_t, state = model.get_logprobs_state(**kwargs)
# gedi
if not gedi_past is None:
model_inputs = gedi_model.gpt.prepare_inputs_for_generation(input_ids, past=gedi_past)
input_batched = torch.cat((model_inputs["input_ids"],model_inputs["input_ids"]),dim=0)
seq_batched = torch.cat((seq_batched,input_batched),dim=1)
inputs = gedi_model.gpt.prepare_inputs_for_generation(seq_batched, past=gedi_past)
inputs["pad_lens"] = gedi_pad_lens
else:
inputs = {"inputs_embeds": seq_batched_embedding, "pad_lens": gedi_pad_lens, "past":gedi_past}
gedi_outputs = gedi_model.gpt(**inputs)
# 剪枝
gedi_outputs_0_temp_softmax = torch.softmax(gedi_outputs[0], -1)
threshold = 1e-3
gedi_outputs_0_temp_softmax[gedi_outputs_0_temp_softmax < threshold] = threshold
gedi_outputs_0_temp_softmax[gedi_outputs_0_temp_softmax > 0.8] = 0.8
gedi_outputs = (torch.log(gedi_outputs_0_temp_softmax), gedi_outputs[1])
# gedi准备
if gedi_past is None:
if gedi_outputs[0].shape[1]>seq_batched_embedding.shape[1]:# 这个没用
shift_logits = gedi_outputs[0][..., :-1, :].contiguous()
shift_labels = seq_batched[..., 1:].contiguous()
loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
logits_r = -1*loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
logits_r = logits_r.view(seq_batched.shape[0], -1)
seq_len = logits_r.shape[1]
logits_r = torch.sum(logits_r,1)
logits_pos,logits_neg = torch.split(logits_r/seq_len,input_ids.shape[0])
logits0 = torch.stack((logits_pos,logits_neg),1)
if "logit_scale" in dir(gedi_model):
logits0 = gedi_model.logit_scale*logits0
if "bias" in dir(gedi_model):
logits0 = logits0 + gedi_model.bias
# if not (class_bias==0):
# logits0[:,0] += class_bias
logp_desired = torch.log_softmax(logits0,-1)[:,0]
logp_undesired = torch.log_softmax(logits0,-1)[:,1]
else:
seq_len=0
logp_desired = (torch.zeros(input_ids.shape[0]) + torch.log(torch.tensor(0.5))).to(input_ids.device)
logp_undesired = (torch.zeros(input_ids.shape[0]) + torch.log(torch.tensor(0.5))).to(input_ids.device)
logits_r = torch.zeros(input_ids.shape[0]*2).to(input_ids.device)
# gedi计算
seq_len= seq_len+1
gedi_logits= (torch.log_softmax(gedi_outputs[0][:, -1, :],-1)+logits_r.unsqueeze(1))
logits_pos,logits_neg = torch.split(gedi_logits/seq_len,input_ids.shape[0])
logits = torch.stack((logits_pos,logits_neg),2)
if "logit_scale" in dir(gedi_model.gpt):
logits = gedi_model.gpt.logit_scale*logits
if "bias" in dir(gedi_model.gpt):
logits = logits + gedi_model.gpt.bias
logp_desired_t = torch.log_softmax(logits,-1)[:,:,0]
logp_undesired_t = torch.log_softmax(logits,-1)[:,:,1]
# guide
if t <= 0:
logprobs_t = torch.log_softmax(1*logprobs_t,-1)
else:
logprobs_t = torch.log_softmax(1*logprobs_t,-1) + disc_weight*(vocab_transform.logP_gpt2puret(logp_desired_t))
# 采样
if greedy_decode:
logP_t, wt = torch.max(logprobs_t, 1)
else:
probs_t = torch.exp(logprobs_t)
wt = torch.multinomial(probs_t, 1)
logP_t = logprobs_t.gather(1, wt)
# 为下一步准备
gedi_past = gedi_outputs[1]
token_gpt = vocab_transform.token_puret2gpt(wt, t==0).to(wt.device)
token_list = token_gpt.tolist()+token_gpt.tolist()
for i in range(0,len(token_list)):
logits_r[i] = gedi_logits[i,token_list[i]]
for i in range(0,len(token_gpt)):
logp_desired[i] = logp_desired_t[i,token_gpt[i]]
logp_undesired[i] = logp_undesired_t[i,token_gpt[i]]
input_ids = torch.cat([input_ids, token_gpt.unsqueeze(-1)], dim=-1)
wt = wt.view(-1).long()
unfinished = unfinished * (wt > 0)
wt = wt * unfinished.type_as(wt)
sents[:,t] = wt
logprobs[:,t] = logP_t.view(-1)
if unfinished.sum() == 0:
break
model.decoder.clear_buffer()
return sents, logprobs
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# base model
parser.add_argument("--pretrained_path", default="/home/liwc/wxp/Alignment/github/trained_model/factual_model/model_pureT_SCST_30.pth")
# gedi model
parser.add_argument("--gedi_model_name_or_path", default="/home/liwc/wxp/Alignment/github/trained_model/stylized_model/model_pos_9.pt", type=str)
parser.add_argument("--code_1", default="positive")
parser.add_argument("--code_0", default="negative")
parser.add_argument("--disc_weight", type=float, default=200)
# 数据集参数
parser.add_argument("--vocab_path", default="./mscoco/txt/coco_vocabulary.txt")
parser.add_argument('--data_test', default='/home/liwc/wxp/Alignment/github/dataset/Senticap/Senticap_ViT-L_14_test.pkl')
parser.add_argument('--teststyle', default='positive')
parser.add_argument('--max_seq_len', default=17)
parser.add_argument("--batch_size", default=36)
# 保存
parser.add_argument("--generated_path", default="./generated/guide")
parser.add_argument("--gen_model_type", default="pureT_SCST")
# 设置
parser.add_argument("--device", default="cuda:1")
args = parser.parse_args()
print("generate parameters %s", args)
# base model
cfg_from_file("./experiments_PureT/PureT_SCST/config.yml")
# cfg.ROOT_DIR = "./experiments_PureT/PureT_SCST/"
model = PureT()
model = model.to(args.device)
model.load_state_dict(torch.load(args.pretrained_path ,map_location=lambda storage, loc: storage))
# gedi model
args.class_bias = 0.0
config_class, model_class, tokenizer_class = GPT2Config, GPT2LMHeadModel, GPT2Tokenizer
tokenizer = tokenizer_class.from_pretrained("gpt2", do_lower_case=False)
config = config_class.from_pretrained("gpt2")
config.nbias = 0
config.logit_scale = True
gpt_gedi = model_class.from_pretrained("gpt2", config=config)
gedi_model = ClipCaptionModel(tokenizer, gpt_gedi, 4, prefix_size=768)
gedi_model.load_state_dict(torch.load(args.gedi_model_name_or_path, map_location="cpu"))
gedi_model.to(args.device)
# dataset
dataset = RCStyleDataset_infer(vocab_path = args.vocab_path, data_path = args.data_test, max_seq_len = args.max_seq_len, teststyle=args.teststyle)
loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False)
vocab_transform = vocab_gpt2puret(tokenizer.decoder, tokenizer.encoder, dataset.vocab)
# generate
model.eval()
# weight_set = [0, 25, 50, 75, 100, 125, 150, 175, 200]
# weight_set = [0, 48, 10, 20, 30, 40, 50, 60, 70, 80]
# for weight in weight_set:
# args.disc_weight = weight
if True:
gens = []
refs = []
image_paths = []
with torch.no_grad():
for infer_step, (imgid, filename, image_embedding, att_feats, style) in enumerate(tqdm.tqdm(loader, desc="test")):
att_feats = att_feats.to(next(model.parameters()).device)
image_embedding = image_embedding.to(next(model.parameters()).device, dtype=torch.float32)
# make_kwargs
base_kwargs = {}
base_kwargs['GV_FEAT'] = None
base_kwargs['ATT_FEATS'] = att_feats
base_kwargs['ATT_FEATS_MASK'] = None
base_kwargs['BEAM_SIZE'] = 1
base_kwargs['GREEDY_DECODE'] = True
gedi_kwargs = {}
gedi_kwargs['code_0'] = args.code_0
gedi_kwargs['code_1'] = args.code_1
gedi_kwargs['style'] = style
gedi_kwargs['disc_weight'] = args.disc_weight
gedi_kwargs['prefix'] = image_embedding
gedi_kwargs['vocab_transform'] = vocab_transform
seq, _ = decode_generate(model, base_kwargs, gedi_model, gedi_kwargs)
# if kwargs['BEAM_SIZE'] > 1:
# seq, _ = model.decode_beam(**kwargs)
# else:
# seq, _ = model.decode(**kwargs)
sents = utils.decode_sequence(dataset.vocab, seq.data)
imgid = imgid.numpy()
for sid, sent in enumerate(sents):
gens.append(sent)
refs.append(dataset.caption[int(imgid[sid])])
image_paths.extend(filename)
# eval
result = {}
clipmodel, preprocess = clip.load('ViT-L/14', device=args.device, jit=False)
clipscores, other_metrics = computer_clipscore_and_other(image_paths, clipmodel, args.device, gens, refs)
result.update(clipscores)
result.update(other_metrics)
# 保存描述
generate_path = args.generated_path + "/" + args.gen_model_type + "/" + args.teststyle
if not os.path.exists(generate_path):
os.makedirs(generate_path)
out_txt_dir = args.generated_path + "/" + args.gen_model_type + "/" + args.teststyle +"/captions_generate_"+ str(args.disc_weight) + ".txt"
with open(out_txt_dir, "w") as file:
for generate_ref in gens:
file.write(generate_ref + "\n")
# 计算ppl评估指标
ppl_out_path = args.generated_path + "/" + args.gen_model_type + "/" + args.teststyle + "/ppl_out_" + str(args.disc_weight) + ".txt"
result["ppl"] = eval_ppl(out_txt_dir, args.teststyle, ppl_out_path)
# 计算acc评估指标
file_error = args.generated_path + "/" + args.gen_model_type + "/" + args.teststyle + "/file_error_"+str(args.disc_weight)+".txt"
result["acc"] = eval_acc(out_txt_dir, args.teststyle, args.device, tokenizer, file_error)
for key, value in result.items():
if isinstance(value, np.float16):
result[key] = float(value)
print(json.dumps({**result}))
print("Its weight is :" + str(args.disc_weight))