-
Notifications
You must be signed in to change notification settings - Fork 188
/
AX25RX.cpp
211 lines (181 loc) · 6.41 KB
/
AX25RX.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
/*
* Copyright (C) 2020 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Config.h"
#if defined(MODE_AX25)
#include "Globals.h"
#include "AX25RX.h"
/*
* Generated with Scipy Filter, 152 coefficients, 1100-2300Hz bandpass,
* Hann window, starting and ending 0 value coefficients removed.
*
* np.array(
* firwin2(152,
* [
* 0.0,
* 1000.0/(sample_rate/2),
* 1100.0/(sample_rate/2),
* 2350.0/(sample_rate/2),
* 2500.0/(sample_rate/2),
* 1.0
* ],
* [0,0,1,1,0,0],
* antisymmetric = False,
* window='hann') * 32768,
* dtype=int)[10:-10]
*/
const uint32_t FILTER_LEN = 130U;
q15_t FILTER_COEFFS[] = {
5, 12, 18, 21, 19, 11, -2, -15, -25, -27,
-21, -11, -3, -5, -19, -43, -69, -83, -73, -35,
27, 98, 155, 180, 163, 109, 39, -20, -45, -26,
23, 74, 89, 39, -81, -247, -407, -501, -480, -334,
-92, 175, 388, 479, 429, 275, 99, 5, 68, 298,
626, 913, 994, 740, 115, -791, -1770, -2544, -2847, -2509,
-1527, -76, 1518, 2875, 3653, 3653, 2875, 1518, -76, -1527,
-2509, -2847, -2544, -1770, -791, 115, 740, 994, 913, 626,
298, 68, 5, 99, 275, 429, 479, 388, 175, -92,
-334, -480, -501, -407, -247, -81, 39, 89, 74, 23,
-26, -45, -20, 39, 109, 163, 180, 155, 98, 27,
-35, -73, -83, -69, -43, -19, -5, -3, -11, -21,
-27, -25, -15, -2, 11, 19, 21, 18, 12, 5
};
CAX25RX::CAX25RX() :
m_filter(),
m_state(),
m_demod1(3),
m_demod2(6),
m_demod3(9),
m_lastFCS(0U),
m_count(0U),
m_slotTime(30U),
m_slotCount(0U),
m_pPersist(128U),
m_dcd(false),
m_canTX(false),
m_x(1U),
m_a(0xB7U),
m_b(0x73U),
m_c(0xF6U)
{
m_filter.numTaps = FILTER_LEN;
m_filter.pState = m_state;
m_filter.pCoeffs = FILTER_COEFFS;
initRand();
}
void CAX25RX::samples(q15_t* samples, uint8_t length)
{
q15_t output[RX_BLOCK_SIZE];
::arm_fir_fast_q15(&m_filter, samples, output, RX_BLOCK_SIZE);
m_count++;
CAX25Frame frame;
bool ret = m_demod1.process(output, length, frame);
if (ret) {
if (frame.m_fcs != m_lastFCS || m_count > 2U) {
m_lastFCS = frame.m_fcs;
m_count = 0U;
serial.writeAX25Data(frame.m_data, frame.m_length - 2U);
}
DEBUG1("Decoder 1 reported");
}
ret = m_demod2.process(output, length, frame);
if (ret) {
if (frame.m_fcs != m_lastFCS || m_count > 2U) {
m_lastFCS = frame.m_fcs;
m_count = 0U;
serial.writeAX25Data(frame.m_data, frame.m_length - 2U);
}
DEBUG1("Decoder 2 reported");
}
ret = m_demod3.process(output, length, frame);
if (ret) {
if (frame.m_fcs != m_lastFCS || m_count > 2U) {
m_lastFCS = frame.m_fcs;
m_count = 0U;
serial.writeAX25Data(frame.m_data, frame.m_length - 2U);
}
DEBUG1("Decoder 3 reported");
}
m_slotCount += RX_BLOCK_SIZE;
if (m_slotCount >= m_slotTime) {
m_slotCount = 0U;
bool dcd1 = m_demod1.isDCD();
bool dcd2 = m_demod2.isDCD();
bool dcd3 = m_demod3.isDCD();
if (dcd1 || dcd2 || dcd3) {
if (!m_dcd) {
io.setDecode(true);
io.setADCDetection(true);
m_dcd = true;
}
m_canTX = false;
} else {
if (m_dcd) {
io.setDecode(false);
io.setADCDetection(false);
m_dcd = false;
}
m_canTX = m_pPersist >= rand();
}
}
}
bool CAX25RX::canTX() const
{
return m_canTX;
}
void CAX25RX::setParams(int8_t twist, uint8_t slotTime, uint8_t pPersist)
{
m_demod1.setTwist(twist - 3);
m_demod2.setTwist(twist);
m_demod3.setTwist(twist + 3);
m_slotTime = slotTime * 240U; // Slot time in samples
m_pPersist = pPersist;
}
// Taken from https://www.electro-tech-online.com/threads/ultra-fast-pseudorandom-number-generator-for-8-bit.124249/
//X ABC Algorithm Random Number Generator for 8-Bit Devices:
//This is a small PRNG, experimentally verified to have at least a 50 million byte period
//by generating 50 million bytes and observing that there were no overapping sequences and repeats.
//This generator passes serial correlation, entropy , Monte Carlo Pi value, arithmetic mean,
//And many other statistical tests. This generator may have a period of up to 2^32, but this has
//not been verified.
//
// By XORing 3 bytes into the a,b, and c registers, you can add in entropy from
//an external source easily.
//
//This generator is free to use, but is not suitable for cryptography due to its short period(by //cryptographic standards) and simple construction. No attempt was made to make this generator
// suitable for cryptographic use.
//
//Due to the use of a constant counter, the generator should be resistant to latching up.
//A significant performance gain is had in that the x variable is only ever incremented.
//
//Only 4 bytes of ram are needed for the internal state, and generating a byte requires 3 XORs , //2 ADDs, one bit shift right , and one increment. Difficult or slow operations like multiply, etc
//were avoided for maximum speed on ultra low power devices.
void CAX25RX::initRand() //Can also be used to seed the rng with more entropy during use.
{
m_a = (m_a ^ m_c ^ m_x);
m_b = (m_b + m_a);
m_c = (m_c + (m_b >> 1) ^ m_a);
}
uint8_t CAX25RX::rand()
{
m_x++; //x is incremented every round and is not affected by any other variable
m_a = (m_a ^ m_c ^ m_x); //note the mix of addition and XOR
m_b = (m_b + m_a); //And the use of very few instructions
m_c = (m_c + (m_b >> 1) ^ m_a); //the right shift is to ensure that high-order bits from b can affect
return uint8_t(m_c); //low order bits of other variables
}
#endif