-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathsynthesis.py
433 lines (376 loc) · 17.7 KB
/
synthesis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
#
# Author: David Futschik
# Provided as part of the Chunkmogrify project, 2021.
#
# This is the glue code for going from ui to result
import os
import cv2
import torch
import numpy as np
from PIL import Image
try:
from align import align_face_npy_with_params
do_align = True
except Exception as e:
print(f"Warning: {e}")
do_align = False
from typing import Any, Callable
from config import dotdict, global_config
from qtutil import get_notify_wait, NowOrDelayTimer, MeasureTime, get_global_error
from _C_heatmap import heatmap
from stylegan_tune import PivotalTuning
from stylegan_project import StyleganProvider, StyleganProjector, \
StyleganSSpaceProjector, StyleganWPlusProjector, \
styleclip_edit
from mask_refinement import mask_refine
from scripts.idempotent_blend import poisson_edit
from skimage.morphology import dilation, disk
projection_modes = [
"w_projection",
"s_projection",
"wplus_projection"
]
edit_modes = [
"none",
"w_edit",
"s_edit"
]
output_modes = [
"target_only",
"projection_only",
"masked",
"blended",
# "idempotent_blend" # Poisson that only changes the mask contents, very slow for now.
]
def load_and_align_image(path, align):
pil = Image.open(path).convert('RGB')
global do_align
if do_align and align:
aligned, params = align_face_npy_with_params(np.array(pil))
else:
print("Skipping alignment and resizing to native resolution")
aligned = np.array(pil)
params = None
aligned = np.array(Image.fromarray(aligned).resize(global_config().generator_native_resolution))
return aligned, params
gan = None
def init_gan(force=False):
global gan
if gan is None or force:
if global_config().ui_debug_run:
print('WARNING: GAN loading disabled for ui debug.')
else:
def load_impl():
global gan
gan = StyleganProvider(global_config().generator_path, global_config().device, global_config().generator_native_resolution)
get_notify_wait().acquire.emit("Loading resources..")
exception = None
try:
load_impl()
# Run dummy input to compile exts.
gan.g.synthesis(torch.randn([1, gan.g.num_ws, gan.g.w_dim]).to(global_config().device), None)
except Exception as e:
exception = e
get_notify_wait().release.emit()
if exception:
print(str(exception))
get_global_error().raiseme.emit("Initializing", f"Error: {str(exception)}", True)
class SynthesisState:
def __init__(self, output: Callable[[np.ndarray], Any], mask_push: Callable[[np.ndarray], Any], mask_pull: Callable[[], np.ndarray],
mask_version: Callable[[], int], projector_added: Callable, projector_removed: Callable):
# Load model as when needed, init to None
self.sg = None
self.projector = None
self.projection_mode = global_config().projection_mode
assert self.projection_mode in projection_modes, f"Unknown projection mode {self.projection_mode}"
print(f"Projection mode set to {self.projection_mode}")
self.target_image, self.alignment_params = None, None
self.mask_version = mask_version
self.mask_pull = mask_pull
self.mask_push = mask_push
self.output_mode = "masked"
self.output = output
self.unaltered_output = None
self.difference_output = None
self.projector_added = projector_added
self.projector_removed = projector_removed
# Synthesize only after this time has passed since last
self.minimum_projection_window = global_config().minimum_projection_update_window
self.minimum_difference_window = 0.5
self.difference_timer = NowOrDelayTimer(self.minimum_difference_window)
self.projection_timer = NowOrDelayTimer(self.minimum_projection_window)
self.last_used_mask_version = None
self.last_output = None
self.last_params = []
self.pti_optimizer = None
def reset_projection(self):
if self.pti_optimizer is not None:
self.pti_optimizer = None
# Model changed, need to reload original gan
init_gan(force=True)
global gan
self.sg = gan
self.projector = None
self.last_output = None
self._synthesize_with_last_params()
self.projector_removed()
self.show_difference(self.target_image, self.target_image)
def set_unaltered_output(self, unaltered_output):
self.unaltered_output = unaltered_output
if self.unaltered_output and self.target_image:
self.unaltered_output(self.target_image)
def _update_unaltered_output(self):
if self.unaltered_output is not None and self.target_image is not None:
self.unaltered_output(self.target_image)
def set_difference_output(self, difference_output):
self.difference_output = difference_output
def load_image_and_reset(self, path, align=True):
image, params = load_and_align_image(path, align)
self.alignment_params = params
self.set_image_and_reset(image)
def set_image_and_reset(self, np_image):
self.target_image = np_image
# Will draw the new image.
self.reset_projection()
def set_output_mode(self, mode):
self.output_mode = mode
if self.projector is not None:
self._synthesize_with_last_params()
def mask_refine(self, dA, dB, iters):
# only works for segment 1 now (last_output[0])
refine_input = self.projector.provider.numpy_uint8_to_torch(self.last_output)
new_mask_torch = mask_refine(self.projector.current_mask, self.projector.target_image, refine_input, dA, dB, iters)
new_mask_np = self.sg.torch_mask_to_numpy(new_mask_torch.permute(1, 2, 3, 0)[0, :, :, :]) # Assume all channels of the mask are the same
self.mask_push(new_mask_np, actor="refine")
def on_mask_changed(self, _new_mask, actor=None):
# Synthesize is correct but makes the mask drawing feel choppy, so check if it's needed.
if self.output_mode == "target_only" or self.output_mode == "projection_only":
return
if self.last_output is not None:
output = self._apply_output_mode(self.last_output)
self.output(output)
# Computing difference also makes it pretty choppy, so only do it periodically
self.show_difference(output, self.target_image, check_frequency=True)
def show_difference(self, x, y, check_frequency=True):
def update():
difference = np.abs(x.astype(np.float) - y)
heatmap_ = heatmap(np.linalg.norm(difference, axis=2).astype(np.float32), 0, 255)
self.difference_output(heatmap_)
if self.difference_output:
if check_frequency:
self.difference_timer.update(update)
else:
update()
# Todo: move export & import somewhere else.
def export_projections(self, prefix):
if self.projector is None:
return
assert self.projector.mode == "w_projection", f"{self.projector.mode} mode is not supported for export"
inp = self.projector.current_projected_w()
mode = 'wplus'
for idx in range(len(inp)):
current_w = inp[idx:idx+1].repeat([1, self.sg.num_ws(), 1])
res = self.sg.generate(current_w, mode)
res_np = self.sg.torch_to_numpy_uint8(res)[0].astype('uint8')
Image.fromarray(res_np).save(os.path.join(prefix, f'{idx:02d}.png'))
def save_ws(self, target_dir):
assert self.projector is not None
w = self.get_w_torch()
for i in range(len(w)):
torch.save(w[i][None, ...], os.path.join(target_dir, f'{i:02d}_w.pt'))
# Very tightly coupled to W projector..
def load_ws(self, source_dir):
assert self.projector is not None
name_template = os.path.join(source_dir, '{idx:02d}_w.pt')
num_expect = self.projector.current_input().shape[0]
for seg in range(num_expect):
where = name_template.format(idx=seg)
if os.path.exists(where):
w = torch.load(where)
with torch.no_grad():
self.projector.current_projected_w_volatile()[seg].copy_(w[:, 0, :])
else: print(f"Couldn't find input file for segment {seg}.")
self._synthesize_with_last_params()
def get_w_torch(self):
if self.projector is None:
return None
assert self.projection_mode == "w_projection", f"{self.projection_mode} cannot export W"
w = self.projector.current_projected_w().detach()
if w.shape[1] == 1:
w = w.repeat([1, self.sg.num_ws(), 1])
return w.cpu()
def pti_step(self):
if self.projector is None: raise ValueError("Cannot run PTI without projection")
if self.projection_mode != "w_projection": raise ValueError("Cannot run PTI without W")
if self.pti_optimizer is None:
if self.projector.target_image.shape[0] > 1:
print("WARNING: Running Pivotal Tuning only on the first segment!")
w_pivot = self.projector.current_projected_w()[:1, :, :].detach().clone()
w_pivot.requires_grad_(False)
if w_pivot.shape[1] == 1: w_pivot = w_pivot.repeat([1, self.sg.num_ws(), 1])
self.pti_optimizer = PivotalTuning(self.sg.g.synthesis,
self.sg.device,
w_pivot, # Must be a W projector
self.projector.target_image[:1, ...],
self.projector.current_mask[:1, ...],
0, 1, 3e-4)
self.pti_optimizer.step()
self._synthesize_with_last_params()
def forward_projection(self):
if self.projector is None:
self._init_projector()
pass
self._synthesize_with_last_params()
def synthesize_with_project_step(self):
# Desired projection mode changed or this is the 1st call.
if self.projector is None or self.projector.mode != self.projection_mode:
self._init_projector()
# Update mask if necessary
mask_ver = self.mask_version()
if mask_ver != self.last_used_mask_version:
self.projector.change_current_mask(self.mask_pull())
self.last_used_mask_version = mask_ver
# Run projector once, apply output mode
# This discards edits, if that is not desired, simply replace with a .synthesize call.
output = next(self.projector)
self.last_output = output
def update():
nonlocal output
output = self._apply_output_mode(output)
self._update_unaltered_output()
self.show_difference(output, self.target_image, check_frequency=True)
self.output(output)
self.projection_timer.update(update)
def synthesize_with_params(self, edit_params):
def impl():
self.last_params = edit_params
with torch.no_grad():
return self._synthesize_with_params(edit_params)
# self.synthesis_timer.update(impl)
impl()
def _synthesize_with_last_params(self):
self.synthesize_with_params(self.last_params)
def _synthesize_with_params_per_segment(self, edit_params):
if self.projector is None:
self._update_unaltered_output()
self.output(self.target_image)
return
edits_by_type = dotdict()
for edit in edit_params:
if edit.type not in edits_by_type: edits_by_type[edit.type] = []
edits_by_type[edit.type].append(edit)
current_w = self.projector.current_input().detach().clone()
if current_w.shape[1] == 1: # Broadcast to W+ for editing
current_w = current_w.repeat([1, self.sg.num_ws(), 1])
def make_segment_slice(selection):
return slice(None) if selection == 'all' else \
slice(int(selection), int(selection) + 1)
# Apply styleclip edits.
for sc_edit in edits_by_type.get('styleclip_edit', []):
segment_slice = make_segment_slice(sc_edit.segment)
current_w[segment_slice, :, :] = styleclip_edit(sc_edit.parameters.model,
current_w[segment_slice, :, :],
sc_edit.parameters.strength)
# Apply W edits.
for w_edit in edits_by_type.get('w_edit', []):
segment_slice = make_segment_slice(w_edit.segment)
direction, lower_n, upper_n = self.sg.directions[w_edit.parameters.direction]
total_multiplier = w_edit.parameters.value * w_edit.parameters.multiplier
add_vector = total_multiplier * direction
current_w[segment_slice, lower_n:upper_n, :] = (current_w + add_vector)[segment_slice, lower_n:upper_n, :]
# Apply S edits.
if len(edits_by_type.get('s_edit', [])) > 0:
# Run until S space.
current_ss = self.sg.w_to_s(current_w)
current_ss = [s.detach().clone() for s in current_ss]
for s_edit in edits_by_type.get('s_edit', []):
segment_slice = make_segment_slice(s_edit.segment)
add_value = s_edit.parameters.value * s_edit.parameters.multiplier
current_ss[s_edit.parameters.layer][segment_slice, s_edit.parameters.channel] += add_value
output_t = self.sg.generate(current_ss, 's')
else:
output_t = self.sg.generate(current_w, 'wplus')
# Convert to images.
output = self.sg.torch_to_numpy_uint8(output_t)
self.last_output = output
# Call the output functor with result
output = self._apply_output_mode(output) # [0]
self.show_difference(output, self.target_image, check_frequency=True)
self.output(output)
def _synthesize_with_params(self, edit_params):
return self._synthesize_with_params_per_segment(edit_params)
def _apply_output_mode(self, projection):
# Compose the result together
if self.output_mode == "projection_only":
# Show first projection only for now :(
output = projection[0]
elif self.output_mode == "target_only":
output = self.target_image
elif self.output_mode == "masked":
# Simple masking without any blend
if self.last_used_mask_version != self.mask_version():
mask = self.mask_pull()
self.projector.change_current_mask(mask)
self.last_used_mask_version = self.mask_version()
output = self.projector.numpy_compose(projection)[0]
elif self.output_mode == "blended":
# Blended mode
dst = self.target_image
msk = (self.mask_pull() * 255).astype(np.uint8)
if msk.shape[2] > 2: # Double blend to reduce leakage of original gradients
for msk_idx in range(msk.shape[2]):
msk_slice = msk_slice = msk[:, :, msk_idx]
src = projection[msk_idx]
dilmsk = dilation(msk_slice, disk(5))
x, y, w, h = cv2.boundingRect(dilmsk)
center = ( int(x + w / 2 + 0.01), int(y + h / 2 + 0.01) )
dst[msk_slice == 255] = self.target_image[msk_slice == 255]
dst2 = cv2.seamlessClone(src, dst, dilmsk, center, cv2.NORMAL_CLONE)
dst = cv2.seamlessClone(dst2, dst2, msk_slice, center, cv2.NORMAL_CLONE)
else: # Original version.
for msk_idx in range(msk.shape[2]):
msk_slice = msk[:, :, msk_idx]
# the poisson editing allows for placing anywhere in the dst image,
# so waste some time finding the bounding rect of the mask again :(
# which is consistent with how the implementation (see source) does it internally
x, y, w, h = cv2.boundingRect(msk_slice)
src = projection[msk_idx]
center = ( int(x + w / 2 + 0.01), int(y + h / 2 + 0.01) )
dst = cv2.seamlessClone(src, dst, msk_slice, center, cv2.NORMAL_CLONE)
output = dst
elif self.output_mode == "idempotent_blend":
src = projection[0]
dst = self.target_image
msk = (self.mask_pull() * 255).astype(np.uint8)
dst_cpy = dst.copy()
dst = poisson_edit(src, dst_cpy, msk[: , :, 0], (0, 0))
output = dst
elif self.output_mode == "netspace":
# blend using sg
output = self.target_image
else:
raise ValueError(f"{self.output_mode} not defined")
return output
def _init_projector(self):
init_gan()
global gan
if self.sg is None:
self.sg = gan
clasz = {
'w_projection': StyleganProjector,
'wplus_projection': StyleganWPlusProjector,
's_projection': StyleganSSpaceProjector,
}[self.projection_mode]
print(f"Initializing {clasz.__name__}")
if global_config().initial_w is not None:
init = torch.load(global_config().initial_w)
if init.shape != (1, 1, 512):
init = init[:, 0:1, :]
if init.shape != (1, 1, 512): raise ValueError(f"Wrong W shape {init.shape}.")
else:
init = None
kwargs = global_config().projection_args
projector = clasz(gan, self.target_image, self.mask_pull(), w_init=init, **kwargs) # **kwargs
projector.mode = self.projection_mode
self.projector = projector
self.projector_added()