-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmae_plot.py
51 lines (48 loc) · 1.7 KB
/
mae_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = '2'
import time
import pickle
import os.path as osp
import numpy as np
import torch
from torchvision import transforms
import torch.nn as nn
import argparse
from data import eval_Dataset
import matplotlib.pyplot as plt
def Eval_mae(loader,cuda=True):
#print('eval[MAE]:{} dataset with {} method.'.format(self.dataset, self.method))
avg_mae, img_num, total = 0.0, 0.0, 0.0
mae_list = []
with torch.no_grad():
trans = transforms.Compose([transforms.ToTensor()])
for pred, gt in loader:
if cuda:
pred = trans(pred).cuda()
gt = trans(gt).cuda()
else:
pred = trans(pred)
gt = trans(gt)
mae = torch.abs(pred - gt).mean()
if mae == mae: # for Nan
avg_mae += mae
img_num += 1.0
mae_list.append(mae.item())
avg_mae /= img_num
return avg_mae, mae_list
# pred_dir ='experiments/SOD_vitb_rn50_384_2.5e-05_ResNet_DUTS_Train_All/save_images/30_epoch/DUTS/'
# dataset_path = '/home1/datasets/SOD_COD/DUTS/gt'
# loader = eval_Dataset(pred_dir, dataset_path)
# mae, mae_list = Eval_mae(loader=loader, cuda=True)
# # plt.hist(mae_list, edgecolor='k', alpha=0.35)
# # plt.savefig('plot.png')
# import pdb; pdb.set_trace()
# print('end')
with open('temp_dir/ours_results_DUTS', 'rb') as f:
mae_list_ours = pickle.loads(f.read())
with open('temp_dir/resnet_results_DUTS', 'rb') as f:
mae_list_resnet = pickle.loads(f.read())
plt.hist(mae_list_ours, edgecolor='k', alpha=0.2, label='Transformer')
plt.hist(mae_list_resnet, edgecolor='k', alpha=0.2, label='ResNet')
plt.legend()
plt.savefig('plot.png')