-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsetup.py
74 lines (67 loc) · 2.3 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
from setuptools import find_packages, setup
from tune_version import __version__
with open("README.md") as f:
_text = ["# Tune"] + f.read().splitlines()[1:]
LONG_DESCRIPTION = "\n".join(_text)
def get_version() -> str:
tag = os.environ.get("RELEASE_TAG", "")
if "dev" in tag.split(".")[-1]:
return tag
if tag != "":
assert tag == __version__, "release tag and version mismatch"
return __version__
setup(
name="tune",
version=get_version(),
packages=find_packages(),
description="An abstraction layer for hyper parameter tuning",
long_description=LONG_DESCRIPTION,
long_description_content_type="text/markdown",
license="Apache-2.0",
author="Han Wang",
author_email="[email protected]",
keywords="hyper parameter hyperparameter tuning tune tuner optimzation",
url="http://github.com/fugue-project/tune",
install_requires=["fugue", "cloudpickle", "triad>=0.8.4", "fs"],
extras_require={
"hyperopt": ["hyperopt"],
"optuna": ["optuna"],
"tensorflow": ["tensorflow"],
"notebook": ["fugue-jupyter", "seaborn"],
"sklearn": ["scikit-learn"],
"mlflow": ["mlflow"],
"all": [
"hyperopt",
"optuna",
"seaborn",
"tensorflow",
"fugue-jupyter",
"scikit-learn",
"mlflow",
],
},
classifiers=[
# "3 - Alpha", "4 - Beta" or "5 - Production/Stable"
"Development Status :: 3 - Alpha",
"Intended Audience :: Developers",
"Topic :: Software Development :: Libraries :: Python Modules",
"License :: OSI Approved :: Apache Software License",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3 :: Only",
],
python_requires=">=3.8",
entry_points={
"tune.plugins": [
"mlflow = tune_mlflow[mlflow]",
"wandb = tune_wandb[wandb]",
"hyperopt = tune_hyperopt[hyperopt]",
"optuna = tune_optuna[optuna]",
"monitor = tune_notebook[notebook]",
]
},
)