-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdata_utils.py
261 lines (231 loc) · 9.18 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
from __future__ import print_function
from __future__ import unicode_literals
import json
import logging
import os
import random
import re
from io import open
import jieba
import numpy as np
import config
logging.basicConfig(
format='%(asctime)s : %(levelname)s : %(message)s',
level=logging.INFO
)
# jieba.load_userdict("dicts/user_dict.txt")
def make_dir(path):
"""
Create a directory if there isn't one already.
"""
if not os.path.exists(path):
os.mkdir(path)
def basic_tokenizer(line, normalize_digits=True):
"""
A tokenizer to tokenize text into tokens.
:param line: a string of sentence.
:param normalize_digits: whether to normalize digits.
"""
words = []
_digit_re = re.compile(r"\d")
for token in jieba.cut(line.strip()):
if token in [" ", "", u"\u035b"]:
continue
if normalize_digits:
token = re.sub(_digit_re, "#", token)
words.append(token)
return words
def build_vocab(filename):
"""
Build vocabulary.
:param filename: "train.enc" or "train.dec"
"""
in_path = os.path.join(config.DATA_PATH, filename)
out_path = os.path.join(config.DATA_PATH, "vocab.{}".format(filename[-3:]))
# Word frequency statistics
# `vocab`: dict of <token, frequency> pairs.
vocab = {}
with open(in_path, encoding="utf-8") as f:
for line in f.readlines():
for token in basic_tokenizer(line):
if token not in vocab:
vocab[token] = 0
vocab[token] += 1
# sort by frequency
# sorted_vocab <type "list">
sorted_vocab = sorted(vocab, key=vocab.get, reverse=True)
with open(out_path, "w", encoding="utf-8") as f:
f.write("<pad>" + "\n")
f.write("<unk>" + "\n")
f.write("<s>" + "\n")
f.write("<\s>" + "\n")
index = 4
for word in sorted_vocab:
# Words with frequency less than `config.THRESHOLD`
# should be dropped.
if vocab[word] < config.THRESHOLD:
return index
f.write(word + "\n")
index += 1
return index
def load_vocab(vocab_path):
"""
Load vocabulary.
Returns:
`words` is a list of vocab strings.
`word2id` is a dict of <word_str, word_id> pairs.
"""
with open(vocab_path, encoding="utf-8") as f:
words = f.read().splitlines()
word2id = {words[i]: i for i in range(len(words))}
return words, word2id
def sentence2id(vocab, line):
"""
Convert a sentence string to word id list.
:param vocab: word2id
:type vocab: dict
:param line: a raw sentence
:return: list of word indices
"""
# Get word index or get the index of <unk>.
return [vocab.get(token, vocab["<unk>"]) for token in basic_tokenizer(line)]
def token2id(data, mode):
"""
Convert all the tokens in the data into their corresponding
index in the vocabulary.
Args:
data: "train" or "test"
mode: "enc" or "dec"
"""
vocab_path = "vocab." + mode
in_path = data + "." + mode
out_path = data + "_ids." + mode
# Get the dict of word2id: `vocab`.
_, vocab = load_vocab(os.path.join(config.DATA_PATH, vocab_path))
in_file = open(os.path.join(config.DATA_PATH, in_path),
encoding="utf-8")
out_file = open(os.path.join(config.DATA_PATH, out_path), "w")
lines = in_file.read().splitlines()
# `lines` is a list of sentence strings, e.g., ["hello!", "how are you?"]
in_file.close()
for line in lines:
if mode == "dec": # we only care about <s> and </s> in decoder
ids = [vocab["<s>"]]
else:
ids = []
ids.extend(sentence2id(vocab, line))
if mode == "dec":
ids.append(vocab["<\s>"])
out_file.write(" ".join(str(id_) for id_ in ids) + "\n")
out_file.close()
def process_data():
logging.info("Processing raw data...")
logging.info("Building vocabulary for encoder inputs...")
enc_vocab_size = build_vocab("train.enc")
logging.info("Building vocabulary for decoder inputs...")
dec_vocab_size = build_vocab("train.dec")
vocab_size = {"encoder": enc_vocab_size, "decoder": dec_vocab_size}
with open(os.path.join(config.DATA_PATH, "vocab_size.json"),
"w", encoding="utf-8") as f:
f.write(json.dumps(vocab_size, ensure_ascii=False))
logging.info("Tokenizing encoder inputs of training data...")
token2id("train", "enc")
logging.info("Tokenizing decoder inputs of training data...")
token2id("train", "dec")
logging.info("Tokenizing encoder inputs of test data...")
token2id("test", "enc")
logging.info("Tokenizing decoder inputs of test data...")
token2id("test", "dec")
def load_data(enc_filename, dec_filename):
"""
Load data from *_ids.* files and group the data into buckets.
Args:
:param enc_filename: "train_ids.enc", etc.
:param dec_filename: "train_ids.dec", etc.
Return:
`data_buckets` is a list of lists. Each list is a bucket,
and each bucket contains many <context, response> pairs.
"""
encode_file = open(os.path.join(config.DATA_PATH, enc_filename))
decode_file = open(os.path.join(config.DATA_PATH, dec_filename))
encode, decode = encode_file.readline(), decode_file.readline()
data_buckets = [[] for _ in config.BUCKETS]
i = 0
while encode and decode:
if (i + 1) % 10000 == 0:
print("Bucketing conversation number", i + 1)
# covert digit string to integer
encode_ids = [int(id_) for id_ in encode.split()]
decode_ids = [int(id_) for id_ in decode.split()]
for bucket_id, (encode_max_size, decode_max_size) in enumerate(config.BUCKETS):
if len(encode_ids) <= encode_max_size and len(decode_ids) <= decode_max_size:
data_buckets[bucket_id].append([encode_ids, decode_ids])
break
# Pairs with too long context or utterance should be dropped.
encode, decode = encode_file.readline(), decode_file.readline()
i += 1
return data_buckets
def _pad_input(input_, size):
"""
Function for zero-padding.
"""
return input_ + [config.PAD_ID] * (size - len(input_))
def _reshape_batch(inputs, size, batch_size):
"""
Create batch-major inputs. Batch inputs are just re-indexed inputs.
:param inputs: encoder_inputs or decoder_inputs, which is a list of batches.
:param size: encoder_size or decoder_size.
:param batch_size: batch size <type "int">.
"""
batch_inputs = []
for length_id in range(size):
batch_inputs.append(np.array([inputs[batch_id][length_id]
for batch_id in range(batch_size)],
dtype=np.int32))
return batch_inputs
def get_batch(data_bucket, bucket_id, batch_size=1):
"""
Get one batch to feed into the model.
Args:
data_bucket: a certain bucket from `data_buckets`,
which is a list of <context, response> pairs.
bucket_id: a bucket index which is randomly chosen.
batch_size: batch size <type "int">.
"""
# Only pad to the max length of the bucket
encoder_size, decoder_size = config.BUCKETS[bucket_id]
encoder_inputs, decoder_inputs = [], []
for _ in range(batch_size):
# Choose a <context, utterance> pair randomly from the current bucket.
encoder_input, decoder_input = random.choice(data_bucket)
# Pad both encoder and decoder, reverse the encoder.
encoder_inputs.append(list(reversed(_pad_input(encoder_input, encoder_size))))
decoder_inputs.append(_pad_input(decoder_input, decoder_size))
# encoder_inputs <type "list">: a batch of input data of encoder.
# encoder_inputs[0]: first padded encoder input of this batch,
# e.g.: [0, 0, 41, 147, 30, 5]
# encoder_inputs[0][0]: first word index of the first encoder.
# Now we create batch-major vectors from the data selected above.
batch_encoder_inputs = _reshape_batch(encoder_inputs, encoder_size, batch_size)
# batch_encoder_inputs: a list of array.
# batch_encoder_inputs[0]: a 1-d array with shape (batch_size,). It
# is the last time step of all encoder inputs within this batch.
batch_decoder_inputs = _reshape_batch(decoder_inputs, decoder_size, batch_size)
# Create decoder_masks to be 0 for decoders that are padding.
batch_masks = []
# For each time step while decoding.
for dec_time_step in range(decoder_size):
batch_mask = np.ones(batch_size, dtype=np.float32)
# For each example in this batch.
for idx in range(batch_size):
# we set mask to 0 if the corresponding target is <PAD> or <\s>.
# the corresponding decoder is decoder_input shifted by 1 forward.
if dec_time_step < decoder_size - 1:
target = decoder_inputs[idx][dec_time_step + 1]
# noinspection PyUnboundLocalVariable
if dec_time_step == decoder_size - 1 or target == config.PAD_ID:
batch_mask[idx] = 0.0
batch_masks.append(batch_mask)
return batch_encoder_inputs, batch_decoder_inputs, batch_masks
if __name__ == "__main__":
process_data()