-
Notifications
You must be signed in to change notification settings - Fork 0
/
symbols.tex
282 lines (277 loc) · 19.7 KB
/
symbols.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
\phantomsection % black magic to get TOC to point to correct page
\markboth{}{\textsc{Index of symbols}}
\addcontentsline{toc}{part}{Index of symbols}
\chapter*{Index of symbols}
% Shorthand for \pageref, we have lots of these.
\newcommand{\pg}[1]{p.~\pageref{#1}}
% In the next macro whitespace matters, so be careful
\newcommand{\symbolindex}[2]{\hbox{\makebox[0.2\textwidth][s]{#1\hfill}\hspace*{2.5em}\parbox[t]{0.65\textwidth}{#2\hfill}}\\[1.5pt]}
% The entries in this table are sorted "alphabetically" whatever that means.
{\OPTindexfont % Set same font size as for the index
% MAKE SURE THERE ARE NO EMPTY LINES, OR ELSE WE GET A PARAGRAPH BREAK.
% ALSO, DO NOT INSERT ANY WHITESPACE AT THE BEGINNING OF ARGUMENTS OF \symbolindex
\noindent
%%%%%%%%%% Equalities %%%%%%%%%%
\symbolindex{$x \defeq a$ }{definition, \pg{defn:defeq}}
\symbolindex{$a \jdeq b$ }{judgmental equality, \pg{defn:judgmental-equality}}
\symbolindex{$a =_A b$ }{identity type, \pg{sec:identity-types}}
\symbolindex{$a = b$ }{identity type, \pg{sec:identity-types}}
\symbolindex{$x \defid b$ }{propositional equality by definition, \pg{rmk:defid}}
\symbolindex{$\idtypevar{A}(a,b)$ }{identity type, \pg{sec:identity-types}}
\symbolindex{$\dpath{P}{p}{a}{b}$ }{dependent path type, \pg{eq:dpath}}
\symbolindex{$a \neq b$ }{disequality, \pg{sec:disequality}}
%%%%%%%%%% Stuff that's hard to alphabetize %%%%%%%%%%
\symbolindex{$\refl{x}$ }{reflexivity path at $x$, \pg{sec:identity-types}}
\symbolindex{$\opp{p}$ }{path reversal, \pg{lem:opp}}
\symbolindex{$p\ct q$ }{path concatenation, \pg{lem:concat}}
\symbolindex{$p\leftwhisker r$ }{left whiskering, \pg{thm:EckmannHilton}}
\symbolindex{$r\rightwhisker q$ }{right whiskering, \pg{thm:EckmannHilton}}
\symbolindex{$r\hct s$ }{horizontal concatenation of 2-paths, \pg{thm:EckmannHilton}}
\symbolindex{$g\circ f$ }{composite of functions, \pg{ex:composition}}
\symbolindex{$g\circ f$ }{composite of morphisms in a precategory, \pg{ct:precategory}}
\symbolindex{$\inv{f}$ }{quasi-inverse of an equivalence, \pg{thm:equiv-eqrel}}
\symbolindex{$\inv{f}$ }{inverse of an isomorphism in a precategory, \pg{ct:inv}}
%%%%%%%%%% Numbers etc. %%%%%%%%%%
\symbolindex{$\emptyt$ }{empty type, \pg{sec:coproduct-types}}
\symbolindex{$\unit$ }{unit type, \pg{sec:finite-product-types}}
\symbolindex{$\ttt$ }{canonical inhabitant of $\unit$, \pg{sec:finite-product-types}}
\symbolindex{$\bool$ }{type of booleans, \pg{sec:type-booleans}}
\symbolindex{$\btrue$, $\bfalse$ }{constructors of $\bool$, \pg{sec:type-booleans}}
\symbolindex{$\izero$, $\ione$ }{point-constructors of the interval $\interval$, \pg{sec:interval}}
%%%%%%%%%% A %%%%%%%%%%
\symbolindex{$\choice{}$ }{axiom of choice, \pg{eq:ac}}
\symbolindex{$\choice{\infty}$ }{``type-theoretic axiom of choice'', \pg{thm:ttac}}
\symbolindex{$\acc(a)$ }{accessibility predicate, \pg{defn:accessibility}}
\symbolindex{$P \land Q$ }{logical conjunction (``and''), \pg{defn:logical-notation}}
\symbolindex{$\apfunc{f}(p)$ or $\ap{f}{p}$ }{application of $f:A\to B$ to $p:\id[A]xy$, \pg{lem:map}}
\symbolindex{$\apd{f}{p}$ }{application of $f:\prd{a:A} B(a)$ to $p:\id[A]xy$, \pg{lem:mapdep}}
% This is not currently a distinctive notation that someone would look up
% $\aptwo{f}{p}$ & two-dimensional $\apfunc{}$, \pg{thm:ap2}
% \\
\symbolindex{$\apdtwo{f}{p}$ }{two-dimensional dependent $\apfunc{}$, \pg{thm:apd2}}
\symbolindex{$x\apart y$ }{apartness of real numbers, \pg{apart}}
%%%%%%%%%% B %%%%%%%%%%
\symbolindex{$\base$ }{basepoint of $\Sn^1$, \pg{sec:intro-hits}}
\symbolindex{$\base$ }{basepoint of $\Sn^2$, \pg{s2a} and \pg{s2b}}
\symbolindex{$\biinv(f)$ }{proposition that $f$ is bi-invertible, \pg{defn:biinv}}
\symbolindex{$x \bisim y$ }{bisimulation, \pg{def:bisimulation}}
\symbolindex{$\blank$ }{blank used for implicit $\lambda$-abstractions, \pg{blank}}
%%%%%%%%%% C %%%%%%%%%%
\symbolindex{$\CAP$ }{type of Cauchy approximations, \pg{cauchy-approximations}}
\symbolindex{$\card$ }{type of cardinal numbers, \pg{defn:card}}
\symbolindex{$\modal A$ }{reflector or modality applied to $A$, \pg{defn:reflective-subuniverse} and \pg{defn:modality}}
\symbolindex{$\cocone{X}{Y}$ }{type of cocones, \pg{defn:cocone}}
% Not used
%\symbolindex{
% \cone{X}{Y}$
%}{
% type of cones
%}
\symbolindex{$\code$ }{family of codes for paths, \pg{sec:compute-coprod}, \pg{S1-universal-cover}, \pg{sec:general-encode-decode}}
\symbolindex{$A \setminus B$ }{subset complement, \pg{complement}}
\symbolindex{$\cons(x,\ell)$ }{concatenation constructor for lists, \pg{lst} and \pg{lst-freemonoid}}
\symbolindex{$\contr_x$ }{path to the center of contraction, \pg{defn:contractible}}
\symbolindex{$\mathcal{F}\cover\pairr{J, \mathcal{G}}$ }{inductive cover, \pg{defn:inductive-cover}}
\symbolindex{$\dcut(L,U)$ }{the property of being a Dedekind cut, \pg{defn:dedekind-reals}}
\symbolindex{$\surr{L}{R}$ }{cut defining a surreal number, \pg{surreal-cut}}
%%%%%%%%%% D %%%%%%%%%%
\symbolindex{$\dgr{X}$ }{morphism reversal in a $\dagger$-category, \pg{sec:dagger-categories}}
\symbolindex{$\decode$ }{decoding function for paths, \pg{sec:compute-coprod}, \pg{S1-universal-cover}, \pg{sec:general-encode-decode}}
%%%%%%%%%% E %%%%%%%%%%
\symbolindex{$\encode$ }{encoding function for paths, \pg{sec:compute-coprod}, \pg{S1-universal-cover}, \pg{sec:general-encode-decode}}
\symbolindex{$\mreturn^\modal_A$ or $\mreturn_A$ }{the function $A\to\modal A$, \pg{defn:reflective-subuniverse} and \pg{defn:modality}}
\symbolindex{$A \epi B$ }{epimorphism or surjection}
\symbolindex{$\noeq(x,y)$ }{path-constructor of the surreals, \pg{defn:surreals}}
\symbolindex{$\rceq(u,v)$ }{path-constructor of the Cauchy reals, \pg{defn:cauchy-reals}}
\symbolindex{$a \eqr b$ }{an equivalence relation, \pg{equivalencerelation}}
\symbolindex{$\eqv{X}{Y}$ }{type of equivalences, \pg{eq:eqv}}
\symbolindex{$\texteqv{X}{Y}$ }{type of equivalences (same as $\eqv{X}{Y}$)}
\symbolindex{$\cteqv{A}{B}$ }{type of equivalences of categories, \pg{ct:equiv}}
\symbolindex{$P \Leftrightarrow Q$ }{logical equivalence, \pg{defn:logical-notation}}
\symbolindex{$\exis{x:A} B(x)$ }{logical notation for mere existential, \pg{defn:logical-notation}}
\symbolindex{$\extend f$ }{extension of $f:A\to B$ along $\eta_A$, \pg{extend}}
%%%%%%%%%% F %%%%%%%%%%
\symbolindex{$\bot$ }{logical falsity, \pg{defn:logical-notation}}
\symbolindex{$\hfib{f}{b}$ }{fiber of $f:A\to B$ at $b:B$, \pg{defn:homotopy-fiber}}
\symbolindex{$\Fin(n)$ }{standard finite type, \pg{fin}}
\symbolindex{$\fall{x:A} B(x)$ }{logical notation for dependent function type, \pg{defn:logical-notation}}
\symbolindex{$\funext$ }{function extensionality, \pg{axiom:funext}}
\symbolindex{$A\to B$ }{function type, \pg{sec:function-types}}
\symbolindex{$B^A$ }{functor precategory, \pg{ct:functor-precat}}
%%%%%%%%%% G %%%%%%%%%%
\symbolindex{$\glue$ }{path constructor of $A \sqcup^C B$, \pg{sec:colimits}}
%%%%%%%%%% H %%%%%%%%%%
\symbolindex{$\happly$ }{function making a path of functions into a homotopy, \pg{eq:happly}}
\symbolindex{$\hom_A(a,b)$ }{hom-set in a precategory, \pg{ct:precategory}}
\symbolindex{$f \htpy g$ }{homotopy between functions, \pg{defn:homotopy}}
%%%%%%%%%% I %%%%%%%%%%
\symbolindex{$\interval$ }{the interval type, \pg{sec:interval}}
\symbolindex{$\idfunc[A]$ }{the identity function of $A$, \pg{idfunc}}
\symbolindex{$1_a$ }{identity morphism in a precategory, \pg{ct:precategory}}
\symbolindex{$\idtoeqv$ }{function $(A=B)\to(\eqv A B)$ which univalence inverts, \pg{eq:uidtoeqv}}
\symbolindex{$\idtoiso$ }{function $(a=b) \to (a\cong b)$ in a precategory, \pg{ct:idtoiso}}
\symbolindex{$\im(f)$ }{image of map $f$, \pg{defn:modal-image}}
\symbolindex{$\im_n(f)$ }{$n$-image of map $f$, \pg{defn:modal-image}}
\symbolindex{$P \Rightarrow Q$ }{logical implication (``implies''), \pg{defn:logical-notation}}
\symbolindex{$a \in P$ }{membership in a subset or subtype, \pg{membership}}
\symbolindex{$x\in v$ }{membership in the cumulative hierarchy, \pg{V-membership}}
\symbolindex{$x\bin v$ }{resized membership, \pg{resized-membership}}
\symbolindex{$\ind{\emptyt}$ }{induction for ${\emptyt}$, \pg{defn:induction-emptyt},}
\symbolindex{$\ind{\unit}$ }{induction for ${\unit}$, \pg{defn:induction-unit},}
\symbolindex{$\ind{\bool}$ }{induction for ${\bool}$, \pg{defn:induction-bool},}
\symbolindex{$\ind{\nat}$ }{induction for ${\nat}$, \pg{defn:induction-nat}, and}
\symbolindex{$\indid{A}$ }{path induction for $=_A$, \pg{defn:induction-ML-id},}
\symbolindex{$\indidb{A}$ }{based path induction for $=_A$, \pg{defn:induction-PM-id},}
\symbolindex{$\ind{A \times B}$ }{induction for ${A \times B}$, \pg{defn:induction-times},}
\symbolindex{$\ind{\sm{x:A} B(x)}$ }{induction for ${\sm{x:A} B}$, \pg{defn:induction-sm},}
\symbolindex{$\ind{A + B}$ }{induction for ${A + B}$, \pg{defn:induction-plus},}
\symbolindex{$\ind{\wtype{x:A} B(x)}$ }{induction for ${\wtype{x:A} B}$, \pg{defn:induction-wtype}}
\symbolindex{$\ordsl{A}{a}$ }{initial segment of an ordinal, \pg{initial-segment}}
\symbolindex{$\inj(A,B)$ }{type of injections, \pg{inj}}
\symbolindex{$\inl$ }{first injection into a coproduct, \pg{sec:coproduct-types}}
\symbolindex{$\inr$ }{second injection into a coproduct, \pg{sec:coproduct-types}}
\symbolindex{$A \cap B$ }{intersection of subsets, \pg{intersection}, classes, \pg{class-intersection}, or intervals, \pg{interval-intersection}}
\symbolindex{$\iscontr(A)$ }{proposition that $A$ is contractible, \pg{defn:contractible}}
\symbolindex{$\isequiv(f)$ }{proposition that $f$ is an equivalence, \pg{basics-isequiv}, \pg{cha:equivalences}, and \pg{sec:concluding-remarks}}
\symbolindex{$\ishae(f)$ }{proposition that $f$ is a half-adjoint equivalence, \pg{defn:ishae}}
\symbolindex{$a\cong b$ }{type of isomorphisms in a (pre)category, \pg{ct:isomorphism}}
\symbolindex{$A\cong B$ }{type of isomorphisms between precategories, \pg{ct:isocat}}
\symbolindex{$A\cong B$ }{type of isomorphisms between sets, \pg{basics:iso}}
\symbolindex{$a\unitaryiso b$ }{type of unitary isomorphisms, \pg{ct:unitary}}
\symbolindex{$\isotoid$ }{inverse of $\idtoiso$ in a category, \pg{isotoid}}
\symbolindex{$\istype{n}(X)$ }{proposition that $X$ is an $n$-type, \pg{def:hlevel}}
\symbolindex{$\isprop(A)$ }{proposition that $A$ is a mere proposition, \pg{defn:isprop}}
\symbolindex{$\isset(A)$ }{proposition that $A$ is a set, \pg{defn:set}}
%%%%%%%%%% J %%%%%%%%%%
\symbolindex{$A*B$ }{join of $A$ and $B$, \pg{join}}
%%%%%%%%%% K %%%%%%%%%%
\symbolindex{$\ker(f)$ }{kernel of a map of pointed sets, \pg{kernel}}
%%%%%%%%%% L %%%%%%%%%%
\symbolindex{$\lam{x} b(x)$ }{$\lambda$-abstraction, \pg{eq:lambda-abstraction}}
\symbolindex{$\lcoh{f}{g}{\eta}$ }{type of left adjoint coherence data, \pg{defn:lcoh-rcoh}}
\symbolindex{$\LEM{}$ }{law of excluded middle, \pg{eq:lem}}
\symbolindex{$\LEM{\infty}$ }{inconsistent propositions-as-types \LEM{}, \pg{thm:not-lem} and \pg{lem-infty}}
\symbolindex{$x < y$ }{strict inequality on natural numbers, \pg{leq-nat}, ordinals, \pg{sec:ordinals}, Cauchy reals, \pg{lt-RC}, surreals, \pg{defn:surreals}, etc.}
\symbolindex{$x \le y$ }{non-strict inequality on natural numbers, \pg{leq-nat}, Cauchy reals, \pg{leq-RC}, surreals, \pg{defn:surreals}, etc.}
\symbolindex{$\preceq$, $\prec$ }{recursive versions of $\le$ and $<$ for surreals, \pg{defn:No-codes}}
\symbolindex{$\ble$, $\blt$, $\bble$, $\bblt$ }{orderings on codomain of $\NO$-recursion, \pg{NO-recursion}}
\symbolindex{$\rclim(x)$ }{limit of a Cauchy approximation, \pg{defn:cauchy-reals}}
\symbolindex{$\linv(f)$ }{type of left inverses to $f$, \pg{defn:linv-rinv}}
\symbolindex{$\lst{X}$ }{type of lists of elements of $X$, \pg{lst} and \pg{lst-freemonoid}}
\symbolindex{$\lloop$ }{path-constructor of $\Sn^1$, \pg{sec:intro-hits}}
%%%%%%%%%% M %%%%%%%%%%
\symbolindex{$\Map_*(A,B)$ }{type of based maps, \pg{based-maps}}
\symbolindex{$x\mapsto b$ }{alternative notation for $\lambda$-abstraction, \pg{mapsto}}
\symbolindex{$\max(x,y)$ }{maximum in some ordering, e.g.\ \pg{ordered-field} and \pg{leq-RC}}
\symbolindex{$\merid(a)$ }{meridian of $\susp A$ at $a:A$, \pg{sec:suspension}}
\symbolindex{$\min(x,y)$ }{minimum in some ordering, e.g.\ \pg{ordered-field} and \pg{leq-RC}}
\symbolindex{$A \mono B$ }{monomorphism or embedding}
%%%%%%%%%% N %%%%%%%%%%
\symbolindex{$\N$ }{type of natural numbers, \pg{sec:inductive-types}}
\symbolindex{$\north$ }{north pole of $\susp A$, \pg{sec:suspension}}
\symbolindex{$\natw$, $\zerow$, $\sucw$ }{natural numbers encoded as a $W$-type, \pg{natw}}
\symbolindex{$\nalg$ }{type of $\nat$-algebras, \pg{defn:nalg}}
\symbolindex{$\nhom(C,D)$ }{type of $\nat$-homomorphisms, \pg{defn:nhom}}
\symbolindex{$\nil$ }{empty list, \pg{lst} and \pg{lst-freemonoid}}
\symbolindex{$\NO$ }{type of surreal numbers, \pg{defn:surreals}}
\symbolindex{$\neg P$ }{logical negation (``not''), \pg{defn:logical-notation}}
\symbolindex{$\typele{n}$, $\typeleU{n}$ }{universe of $n$-types, \pg{universe-of-ntypes}}
%%%%%%%%%% O %%%%%%%%%%
\symbolindex{$\Omega(A,a)$, $\Omega A$ }{loop space of a pointed type, \pg{def:loopspace}}
\symbolindex{$\Omega^k(A,a)$, $\Omega^k A$ }{iterated loop space, \pg{def:loopspace}}
\symbolindex{$A\op$ }{opposite precategory, \pg{ct:opposite-category}}
\symbolindex{$P \lor Q$ }{logical disjunction (``or''), \pg{defn:logical-notation}}
\symbolindex{$\ord$ }{type of ordinal numbers, \pg{ord}}
%%%%%%%%%% P %%%%%%%%%%
\symbolindex{$\pairr{a,b}$ }{(dependent) pair, \pg{sec:finite-product-types} and \pg{defn:dependent-pair}}
\symbolindex{$\pairpath$ }{constructor for $=_{A \times B}$, \pg{defn:pairpath}}
\symbolindex{$\pi_n(A)$ }{$n^{\mathrm{th}}$ homotopy group of $A$, \pg{thm:homotopy-groups} and \pg{def-of-homotopy-groups}}
\symbolindex{$\power A$ }{power set, \pg{powerset}}
\symbolindex{$\powerp A$ }{merely-inhabited power set, \pg{inhabited-powerset}}
\symbolindex{$\Zpred$ }{predecessor function $\Z\to\Z$, \pg{subsec:pi1s1-encode-decode}}
\symbolindex{$A\times B$ }{cartesian product type, \pg{sec:finite-product-types}}
\symbolindex{$\prd{x:A} B(x)$ }{dependent function type, \pg{sec:pi-types}}
\symbolindex{$\proj1(t)$ }{the first projection from a pair, \pg{defn:proj} and \pg{defn:dependent-proj1}}
\symbolindex{$\proj2(t)$ }{the second projection from a pair, \pg{defn:proj} and \pg{defn:dependent-proj1}}
\symbolindex{$\prop$, $\propU$ }{universe of mere propositions, \pg{propU}}
\symbolindex{$A \times_C B$ }{pullback of $A$ and $B$ over $C$, \pg{eq:defn-pullback}}
\symbolindex{$A \sqcup^C B$ }{pushout of $A$ and $B$ under $C$, \pg{sec:colimits}}
%%%%%%%%%% Q %%%%%%%%%%
\symbolindex{$\Q$ }{type of rational numbers, \pg{sec:field-rati-numb}}
\symbolindex{$\Qp$ }{type of positive rational numbers, \pg{positive-rationals}}
\symbolindex{$\qinv(f)$ }{type of quasi-inverses to $f$, \pg{qinv}}
\symbolindex{$A/R$ }{quotient of a set by an equivalence relation, \pg{sec:set-quotients}}
\symbolindex{$A\sslash R$ }{alternative definition of quotient, \pg{def:VVquotient}}
%%%%%%%%%% R %%%%%%%%%%
\symbolindex{$\R$ }{type of real numbers (either), \pg{sec:compactness-interval}}
\symbolindex{$\RC$ }{type of Cauchy real numbers, \pg{defn:cauchy-reals}}
\symbolindex{$\RD$ }{type of Dedekind real numbers, \pg{defn:dedekind-reals}}
\symbolindex{$\rcrat(q)$ }{rational number regarded as a Cauchy real, \pg{defn:cauchy-reals}}
\symbolindex{$\rcoh{f}{g}{\epsilon}$ }{type of right adjoint coherence data, \pg{defn:lcoh-rcoh}}
\symbolindex{$\rec{\emptyt}$ }{recursor for ${\emptyt}$, \pg{defn:recursor-emptyt}}
\symbolindex{$\rec{\unit}$ }{recursor for ${\unit}$, \pg{defn:recursor-unit}}
\symbolindex{$\rec{\bool}$ }{recursor for ${\bool}$, \pg{defn:recursor-bool}}
\symbolindex{$\rec{\nat}$ }{recursor for ${\nat}$, \pg{defn:recursor-nat}}
\symbolindex{$\rec{A \times B}$ }{recursor for ${A \times B}$, \pg{defn:recursor-times}}
\symbolindex{$\rec{\sm{x:A} B(x)}$ }{recursor for ${\sm{x:A} B}$, \pg{defn:recursor-sm}}
\symbolindex{$\rec{A + B}$ }{recursor for ${A + B}$, \pg{defn:recursor-plus}}
\symbolindex{$\rec{\wtype{x:A} B(x)}$ }{recursor for ${\wtype{x:A} B}$, \pg{defn:recursor-wtype}}
\symbolindex{$\rinv$ }{type of right inverses to $f$, \pg{defn:linv-rinv}}
%%%%%%%%%% S %%%%%%%%%%
\symbolindex{$\south$ }{south pole of $\susp A$, \pg{sec:suspension}}
\symbolindex{$\Sn^n$ }{$n$-dimensional sphere, \pg{sec:circle}}
\symbolindex{$\seg$ }{path-constructor of the interval $\interval$, \pg{sec:interval}}
\symbolindex{$\set$, $\setU$ }{universe of sets, \pg{setU}}
\symbolindex{$\uset$ }{category of sets, \pg{ct:precatset}}
\symbolindex{$\vset(A,f)$ }{constructor of the cumulative hierarchy, \pg{defn:V}}
\symbolindex{$x\sim_\epsilon y$ }{relation of $\epsilon$-closeness for $\RC$, \pg{defn:cauchy-reals}}
\symbolindex{$x\approx_\epsilon y$ }{recursive version of $\sim_\epsilon$, \pg{defn:RC-approx}}
\symbolindex{$\bsim_\epsilon$ or $\bbsim_\epsilon$ }{closeness relations on codomain of $\RC$-recursion, \pg{RC-recursion}}
\symbolindex{$A\wedge B$ }{smash product of $A$ and $B$, \pg{smash}}
\symbolindex{$\setof{x : A | P(x)}$ }{subset type, \pg{defn:setof}}
\symbolindex{$\setof{ f(x) | P(x)}$ }{image of a subset, \pg{subset-image}}
\symbolindex{$B \subseteq C$ }{containment of subset types, \pg{subset}}
\symbolindex{$(q,r)\subseteq (s,t)$ }{inclusion of intervals, \pg{interval-subset}}
\symbolindex{$\suc$ }{successor function $\N\to\N$, \pg{sec:inductive-types}}
\symbolindex{$\Zsuc$ }{successor function $\Z\to\Z$, \pg{sec:pi1s1-initial-thoughts}}
\symbolindex{$A+B$ }{coproduct type, \pg{sec:coproduct-types}}
\symbolindex{$\sm{x:A} B(x)$ }{dependent pair type, \pg{sec:sigma-types}}
\symbolindex{$\supp(a, f)$ }{constructor for $W$-type, \pg{defn:supp}}
\symbolindex{$\surf$ }{2-path constructor of $\Sn^2$, \pg{s2a} and \pg{s2b}}
\symbolindex{$\susp A$ }{suspension of $A$, \pg{sec:suspension}}
%%%%%%%%%% T %%%%%%%%%%
\symbolindex{$\total{f}$ }{induced map on total spaces, \pg{defn:total-map}}
\symbolindex{$\trans{p}{u}$ }{transport of $u:P(x)$ along $p:x=y$, \pg{lem:transport}}
\symbolindex{$\transfib{P}{p}{u}$ }{transport of $u:P(x)$ along $p:x=y$, \pg{lem:transport}}
\symbolindex{$\transtwo{X}{Y}$ }{two-dimensional transport, \pg{thm:transport2}}
\symbolindex{$\transconst{X}{Y}{Z}$ }{transporting in a constant family, \pg{thm:trans-trivial}}
\symbolindex{$\trunc{n}{A}$ }{$n$-truncation of $A$, \pg{sec:truncations}}
\symbolindex{$\tproj[A]{n}{a}$, $\tproj{n}{a}$ }{image of $a:A$ in $\trunc n A$, \pg{sec:truncations}}
\symbolindex{$\brck{A}$ }{propositional truncation of $A$, \pg{subsec:prop-trunc} and \pg{sec:hittruncations}}
\symbolindex{$\bproj{a}$ }{image of $a:A$ in $\brck A$, \pg{subsec:prop-trunc} and \pg{sec:hittruncations}}
\symbolindex{$\top$ }{logical truth, \pg{defn:logical-notation}}
%%%%%%%%%% U %%%%%%%%%%
\symbolindex{$\nameless$ }{an unnamed object or variable}
\symbolindex{$A \cup B$ }{union of subsets, \pg{union}}
\symbolindex{$\uniq{A\times B}$ }{uniqueness principle for the product $A\times B$, \pg{uniquenessproduct}}
\symbolindex{$\uniq{\unit}$ }{uniqueness principle for $\unit$, \pg{uniquenessunit}}
\symbolindex{$\UU$ }{universe type, \pg{sec:universes}}
\symbolindex{$\modaltype$ }{universe of modal types, \pg{eq:modaltype}}
\symbolindex{$\pointed\type$ }{universe of pointed types, \pg{def:pointedtype}}
\symbolindex{$\ua$ }{inverse to $\idtoeqv$ from univalence, \pg{ua}}
%%%%%%%%%% V %%%%%%%%%%
\symbolindex{$V$ }{cumulative hierarchy, \pg{defn:V}}
%%%%%%%%%% W %%%%%%%%%%
\symbolindex{$\walg(A,B)$ }{type of $w$-algebras, \pg{walg}}
\symbolindex{$\whom_{A,B}(C,D)$ }{type of $\w$-homomorphisms, \pg{whom}}
\symbolindex{$\wtype{x:A} B(x)$ }{$W$-type (inductive type), \pg{sec:w-types}}
\symbolindex{$A\vee B$ }{wedge of $A$ and $B$, \pg{wedge}}
%%%%%%%%%% X %%%%%%%%%%
%%%%%%%%%% Y %%%%%%%%%%
\symbolindex{$\y$ }{Yoneda embedding, \pg{ct:yoneda}}
%%%%%%%%%% Z %%%%%%%%%%
\symbolindex{$\Z$ }{type of integers, \pg{defn-Z}}}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "hott-online"
%%% End: