From 0d4fd819a0c031e2e5548c476140218150fc3f75 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Primo=C5=BE=20Zidan=C5=A1ek?= <99916648+primi13@users.noreply.github.com> Date: Sat, 9 Nov 2024 18:03:47 +0100 Subject: [PATCH] Update 04-random_variables.Rmd --- 04-random_variables.Rmd | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/04-random_variables.Rmd b/04-random_variables.Rmd index ebeabf4..db7dbc4 100644 --- a/04-random_variables.Rmd +++ b/04-random_variables.Rmd @@ -756,7 +756,7 @@ We write \begin{equation} X | \alpha, \beta \sim \text{Gamma}(\alpha, \beta) \end{equation} -and it's CDF is +and its CDF is \begin{equation} \frac{\gamma(\alpha, \beta x)}{\Gamma(\alpha)}, \end{equation} @@ -794,7 +794,7 @@ This is the PDF of the exponential distribution with parameter $\beta$. b. \begin{align} - p(x) &= \frac{1}{\Gamma(k)\beta^k} x^{k - 1}e^{-\frac{x}{\theta}}. + p(x) &= \frac{1}{\Gamma(k)\theta^k} x^{k - 1}e^{-\frac{x}{\theta}}. \end{align} ``` @@ -820,7 +820,7 @@ Many statistical methods assume a normal distribution. We denote \begin{equation} X | \mu, \sigma \sim \text{N}(\mu, \sigma^2), \end{equation} -and it's CDF is +and its CDF is \begin{equation} F(x) = \int_{-\infty}^x \frac{1}{\sqrt{2 \pi \sigma^2}} e^{-\frac{(t - \mu)^2}{2 \sigma^2}} dt, \end{equation}