-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path15-maximum_likelihood.Rmd
761 lines (602 loc) · 28.5 KB
/
15-maximum_likelihood.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
# Maximum likelihood {#ml}
This chapter deals with maximum likelihood estimation.
The students are expected to acquire the following knowledge:
- How to derive MLE.
- Applying MLE in R.
- Calculating and interpreting Fisher information.
- Practical use of MLE.
<style>
.fold-btn {
float: right;
margin: 5px 5px 0 0;
}
.fold {
border: 1px solid black;
min-height: 40px;
}
</style>
<script type="text/javascript">
$(document).ready(function() {
$folds = $(".fold");
$folds.wrapInner("<div class=\"fold-blck\">"); // wrap a div container around content
$folds.prepend("<button class=\"fold-btn\">Unfold</button>"); // add a button
$(".fold-blck").toggle(); // fold all blocks
$(".fold-btn").on("click", function() { // add onClick event
$(this).text($(this).text() === "Fold" ? "Unfold" : "Fold"); // if the text equals "Fold", change it to "Unfold"or else to "Fold"
$(this).next(".fold-blck").toggle("linear"); // "swing" is the default easing function. This can be further customized in its speed or the overall animation itself.
})
});
</script>
```{r, echo = FALSE, warning = FALSE, message = FALSE}
togs <- T
library(ggplot2)
library(dplyr)
library(reshape2)
library(tidyr)
library(MASS)
library(ggforce)
library(mixtools)
library(ade4)
library(ggfortify)
library(numDeriv)
# togs <- FALSE
```
## Deriving MLE
```{exercise}
a. Derive the maximum likelihood estimator of variance for N$(\mu, \sigma^2)$.
b. Compare with results from \@ref(exr:cbest). What does that say about the MLE estimator?
```
<div class="fold">
```{solution, echo = togs}
a. The mean is assumed constant, so we have the likelihood
\begin{align}
L(\sigma^2; y) &= \prod_{i=1}^n \frac{1}{\sqrt{2 \pi \sigma^2}} e^{-\frac{(y_i - \mu)^2}{2 \sigma^2}} \\
&= \frac{1}{\sqrt{2 \pi \sigma^2}^n} e^{\frac{-\sum_{i=1}^n (y_i - \mu)^2}{2 \sigma^2}}
\end{align}
We need to find the maximum of this function. We first observe that we can replace $\frac{-\sum_{i=1}^n (y_i - \mu)^2}{2}$ with a constant $c$, since none of the terms are dependent on $\sigma^2$. Additionally, the term $\frac{1}{\sqrt{2 \pi}^n}$ does not affect the calculation of the maximum. So now we have
\begin{align}
L(\sigma^2; y) &= (\sigma^2)^{-\frac{n}{2}} e^{\frac{c}{\sigma^2}}.
\end{align}
Differentiating we get
\begin{align}
\frac{d}{d \sigma^2} L(\sigma^2; y) &= (\sigma^2)^{-\frac{n}{2}} \frac{d}{d \sigma^2} e^{\frac{c}{\sigma^2}} + e^{\frac{c}{\sigma^2}} \frac{d}{d \sigma^2} (\sigma^2)^{-\frac{n}{2}} \\
&= - (\sigma^2)^{-\frac{n}{2}} e^{\frac{c}{\sigma^2}} \frac{c}{(\sigma^2)^2} - e^{\frac{c}{\sigma^2}} \frac{n}{2} (\sigma^2)^{-\frac{n + 2}{2}} \\
&= - (\sigma^2)^{-\frac{n + 4}{2}} e^{\frac{c}{\sigma^2}} c - e^{\frac{c}{\sigma^2}} \frac{n}{2} (\sigma^2)^{-\frac{n + 2}{2}} \\
&= - e^{\frac{c}{\sigma^2}} (\sigma^2)^{-\frac{n + 4}{2}} \Big(c + \frac{n}{2}\sigma^2 \Big).
\end{align}
To get the maximum, this has to equal to 0, so
\begin{align}
c + \frac{n}{2}\sigma^2 &= 0 \\
\sigma^2 &= -\frac{2c}{n} \\
\sigma^2 &= \frac{\sum_{i=1}^n (Y_i - \mu)^2}{n}.
\end{align}
b. The MLE estimator is biased.
```
</div>
```{exercise, name = "Multivariate normal distribution"}
a. Derive the maximum likelihood estimate for the mean and covariance matrix of the multivariate normal.
b. <span style="color:blue">Simulate $n = 40$ samples from a bivariate normal distribution (choose non-trivial parameters, that is, mean $\neq 0$ and covariance $\neq 0$). Compute the MLE for the sample. Overlay the data with an ellipse that is determined by the MLE and an ellipse that is determined by the chosen true parameters.</span>
c. <span style="color:blue">Repeat b. several times and observe how the estimates (ellipses) vary around the true value.</span>
Hint: For the derivation of MLE, these identities will be helpful: $\frac{\partial b^T a}{\partial a} = \frac{\partial a^T b}{\partial a} = b$, $\frac{\partial a^T A a}{\partial a} = (A + A^T)a$, $\frac{\partial \text{tr}(BA)}{\partial A} = B^T$, $\frac{\partial \ln |A|}{\partial A} = (A^{-1})^T$, $a^T A a = \text{tr}(a^T A a) = \text{tr}(a a^T A) = \text{tr}(Aaa^T)$.
```
<div class="fold">
```{solution, echo = togs}
The log likelihood of the MVN distribution is
\begin{align*}
l(\mu, \Sigma ; x) &= -\frac{1}{2}\Big(\sum_{i=1}^n k\ln(2\pi) + |\Sigma| + (x_i - \mu)^T \Sigma^{-1} (x_i - \mu)\Big) \\
&= -\frac{n}{2}\ln|\Sigma| + -\frac{1}{2}\Big(\sum_{i=1}^n(x_i - \mu)^T \Sigma^{-1} (x_i - \mu)\Big) + c,
\end{align*}
where $c$ is a constant with respect to $\mu$ and $\Sigma$.
To find the MLE we first need to find partial derivatives. Let us start with $\mu$.
\begin{align*}
\frac{\partial}{\partial \mu}l(\mu, \Sigma ; x) &= \frac{\partial}{\partial \mu} -\frac{1}{2}\Big(\sum_{i=1}^n x_i^T \Sigma^{-1} x_i - x_i^T \Sigma^{-1} \mu - \mu^T \Sigma^{-1} x_i + \mu^T \Sigma^{-1} \mu \Big) \\
&= -\frac{1}{2}\Big(\sum_{i=1}^n - \Sigma^{-1} x_i - \Sigma^{-1} x_i + 2 \Sigma^{-1} \mu \Big) \\
&= -\Sigma^{-1}\Big(\sum_{i=1}^n - x_i + \mu \Big).
\end{align*}
Equating above with zero, we get
\begin{align*}
\sum_{i=1}^n - x_i + \mu &= 0 \\
\hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i,
\end{align*}
which is the dimension-wise empirical mean. Now for the covariance matrix
\begin{align*}
\frac{\partial}{\partial \Sigma^{-1}}l(\mu, \Sigma ; x) &= \frac{\partial}{\partial \Sigma^{-1}} -\frac{n}{2}\ln|\Sigma| + -\frac{1}{2}\Big(\sum_{i=1}^n(x_i - \mu)^T \Sigma^{-1} (x_i - \mu)\Big) \\
&= \frac{\partial}{\partial \Sigma^{-1}} -\frac{n}{2}\ln|\Sigma| + -\frac{1}{2}\Big(\sum_{i=1}^n \text{tr}((x_i - \mu)^T \Sigma^{-1} (x_i - \mu))\Big) \\
&= \frac{\partial}{\partial \Sigma^{-1}} -\frac{n}{2}\ln|\Sigma| + -\frac{1}{2}\Big(\sum_{i=1}^n \text{tr}((\Sigma^{-1} (x_i - \mu) (x_i - \mu)^T )\Big) \\
&= \frac{n}{2}\Sigma + -\frac{1}{2}\Big(\sum_{i=1}^n (x_i - \mu) (x_i - \mu)^T \Big).
\end{align*}
Equating above with zero, we get
\begin{align*}
\hat{\Sigma} = \frac{1}{n}\sum_{i=1}^n (x_i - \mu) (x_i - \mu)^T.
\end{align*}
```
```{r, echo = togs, message = FALSE, eval = togs, warning=FALSE}
set.seed(1)
n <- 40
mu <- c(1, -2)
Sigma <- matrix(data = c(2, -1.6, -1.6, 1.8), ncol = 2)
X <- mvrnorm(n = n, mu = mu, Sigma = Sigma)
colnames(X) <- c("X1", "X2")
X <- as.data.frame(X)
# plot.new()
tru_ellip <- ellipse(mu, Sigma, draw = FALSE)
colnames(tru_ellip) <- c("X1", "X2")
tru_ellip <- as.data.frame(tru_ellip)
mu_est <- apply(X, 2, mean)
tmp <- as.matrix(sweep(X, 2, mu_est))
Sigma_est <- (1 / n) * t(tmp) %*% tmp
est_ellip <- ellipse(mu_est, Sigma_est, draw = FALSE)
colnames(est_ellip) <- c("X1", "X2")
est_ellip <- as.data.frame(est_ellip)
ggplot(data = X, aes(x = X1, y = X2)) +
geom_point() +
geom_path(data = tru_ellip, aes(x = X1, y = X2, color = "truth")) +
geom_path(data = est_ellip, aes(x = X1, y = X2, color = "estimated")) +
labs(color = "type")
```
</div>
```{exercise, name = "Logistic regression", label = logisticmle}
Logistic regression is a popular discriminative model when our target variable is binary (categorical with 2 values). One of the ways of looking at logistic regression is that it is linear regression but instead of using the linear term as the mean of a normal RV, we use it as the mean of a Bernoulli RV. Of course, the mean of a Bernoulli is bounded on $[0,1]$, so, to avoid non-sensical values, we squeeze the linear between 0 and 1 with the inverse logit function inv_logit$(z) = 1 / (1 + e^{-z})$. This leads to the following model: $y_i | \beta, x_i \sim \text{Bernoulli}(\text{inv_logit}(\beta x_i))$.
a. Explicitly write the likelihood function of beta.
b. <span style="color:blue">Implement the likelihood function in R. Use black-box box-constraint optimization (for example, _optim()_ with L-BFGS) to find the maximum likelihood estimate for beta for $x$ and $y$ defined below.</span>
c. <span style="color:blue">Plot the estimated probability as a function of the independent variable. Compare with the truth.</span>
d. Let $y2$ be a response defined below. Will logistic regression work well on this dataset? Why not? How can we still use the model, without changing it?
```
```{r, message = FALSE, warning=FALSE}
inv_log <- function (z) {
return (1 / (1 + exp(-z)))
}
set.seed(1)
x <- rnorm(100)
y <- rbinom(100, size = 1, prob = inv_log(1.2 * x))
y2 <- rbinom(100, size = 1, prob = inv_log(1.2 * x + 1.4 * x^2))
```
<div class="fold">
```{solution, echo = togs}
\begin{align*}
l(\beta; x, y) &= p(y | x, \beta) \\
&= \ln(\prod_{i=1}^n \text{inv_logit}(\beta x_i)^{y_i} (1 - \text{inv_logit}(\beta x_i))^{1 - y_i}) \\
&= \sum_{i=1}^n y_i \ln(\text{inv_logit}(\beta x_i)) + (1 - y_i) \ln(1 - \text{inv_logit}(\beta x_i)).
\end{align*}
```
```{r, echo = togs, message = FALSE, eval = togs, warning=FALSE}
set.seed(1)
inv_log <- function (z) {
return (1 / (1 + exp(-z)))
}
x <- rnorm(100)
y <- x
y <- rbinom(100, size = 1, prob = inv_log(1.2 * x))
l_logistic <- function (beta, X, y) {
logl <- -sum(y * log(inv_log(as.vector(beta %*% X))) + (1 - y) * log((1 - inv_log(as.vector(beta %*% X)))))
return(logl)
}
my_optim <- optim(par = 0.5, fn = l_logistic, method = "L-BFGS-B",
lower = 0, upper = 10, X = x, y = y)
my_optim$par
truth_p <- data.frame(x = x, prob = inv_log(1.2 * x), type = "truth")
est_p <- data.frame(x = x, prob = inv_log(my_optim$par * x), type = "estimated")
plot_df <- rbind(truth_p, est_p)
ggplot(data = plot_df, aes(x = x, y = prob, color = type)) +
geom_point(alpha = 0.3)
y2 <- rbinom(2000, size = 1, prob = inv_log(1.2 * x + 1.4 * x^2))
X2 <- cbind(x, x^2)
my_optim2 <- optim(par = c(0, 0), fn = l_logistic, method = "L-BFGS-B",
lower = c(0, 0), upper = c(2, 2), X = t(X2), y = y2)
my_optim2$par
tmp <- sweep(data.frame(x = x, x2 = x^2), 2, my_optim2$par, FUN = "*")
tmp <- tmp[ ,1] + tmp[ ,2]
truth_p <- data.frame(x = x, prob = inv_log(1.2 * x + 1.4 * x^2), type = "truth")
est_p <- data.frame(x = x, prob = inv_log(tmp), type = "estimated")
plot_df <- rbind(truth_p, est_p)
ggplot(data = plot_df, aes(x = x, y = prob, color = type)) +
geom_point(alpha = 0.3)
```
</div>
```{exercise, name = "Linear regression"}
<span style="color:blue">For the data generated below, do the following:</span>
a. <span style="color:blue">Compute the least squares (MLE) estimate of coefficients beta using the matrix exact solution.</span>
b. <span style="color:blue">Compute the MLE by minimizing the sum of squared residuals using black-box optimization (_optim()_).</span>
c. <span style="color:blue">Compute the MLE by using the output built-in linear regression (lm() ). Compare (a-c and the true coefficients).</span>
d. <span style="color:blue">Compute 95% CI on the beta coefficients using the output of built-in linear regression.</span>
e. <span style="color:blue">Compute 95% CI on the beta coefficients by using (a or b) and the bootstrap with percentile method for CI. Compare with d.</span>
```
```{r, message = FALSE, warning=FALSE}
set.seed(1)
n <- 100
x1 <- rnorm(n)
x2 <- rnorm(n)
x3 <- rnorm(n)
X <- cbind(x1, x2, x3)
beta <- c(0.2, 0.6, -1.2)
y <- as.vector(t(beta %*% t(X))) + rnorm(n, sd = 0.2)
```
<div class="fold">
```{r, echo = togs, message = FALSE, eval = togs, warning=FALSE}
set.seed(1)
n <- 100
x1 <- rnorm(n)
x2 <- rnorm(n)
x3 <- rnorm(n)
X <- cbind(x1, x2, x3)
beta <- c(0.2, 0.6, -1.2)
y <- as.vector(t(beta %*% t(X))) + rnorm(n, sd = 0.2)
LS_fun <- function (beta, X, y) {
return(sum((y - beta %*% t(X))^2))
}
my_optim <- optim(par = c(0, 0, 0), fn = LS_fun, lower = -5, upper = 5,
X = X, y = y, method = "L-BFGS-B")
my_optim$par
df <- data.frame(y = y, x1 = x1, x2 = x2, x3 = x3)
my_lm <- lm(y ~ x1 + x2 + x3 - 1, data = df)
my_lm
# matrix solution
beta_hat <- solve(t(X) %*% X) %*% t(X) %*% y
beta_hat
out <- summary(my_lm)
out$coefficients[ ,2]
# bootstrap CI
nboot <- 1000
beta_boot <- matrix(data = NA, ncol = length(beta), nrow = nboot)
for (i in 1:nboot) {
inds <- sample(1:n, n, replace = T)
new_df <- df[inds, ]
X_tmp <- as.matrix(new_df[ ,-1])
y_tmp <- new_df[ ,1]
# print(nrow(new_df))
tmp_beta <- solve(t(X_tmp) %*% X_tmp) %*% t(X_tmp) %*% y_tmp
beta_boot[i, ] <- tmp_beta
}
apply(beta_boot, 2, mean)
apply(beta_boot, 2, quantile, probs = c(0.025, 0.975))
out$coefficients[ ,2]
```
</div>
```{exercise, name = "Principal component analysis"}
<span style="color:blue">Load the _olympic_ data set from package _ade4_. The data show decathlon results for 33 men in 1988 Olympic Games. This data set serves as a great example of finding the latent structure in the data, as there are certain characteristics of the athletes that make them excel at different events. For example an explosive athlete will do particulary well in sprints and long jumps.</span>
a. <span style="color:blue">Perform PCA (_prcomp_) on the data set and interpret the first 2 latent dimensions. Hint: Standardize the data first to get meaningful results.</span>
b. <span style="color:blue">Use MLE to estimate the covariance of the standardized multivariate distribution.</span>
c. <span style="color:blue">Decompose the estimated covariance matrix with the eigendecomposition. Compare the eigenvectors to the output of PCA.</span>
```
<div class="fold">
```{r, echo = togs, message = FALSE, eval = togs, warning=FALSE}
data(olympic)
X <- olympic$tab
X_scaled <- scale(X)
my_pca <- prcomp(X_scaled)
summary(my_pca)
autoplot(my_pca, data = X, loadings = TRUE, loadings.colour = 'blue',
loadings.label = TRUE, loadings.label.size = 3)
Sigma_est <- (1 / nrow(X_scaled)) * t(X_scaled) %*% X_scaled
Sigma_dec <- eigen(Sigma_est)
Sigma_dec$vectors
my_pca$rotation
```
</div>
```{exercise, name = "Classification"}
Let $D = \{(x_i, y_i)\}_{i=1}^n$ be a dataset of feature vectors and their corresponding integer class labels. We wish to classify feature vectors into correct classes.
a. Choose a suitable probability distribution $P_\theta(Y|X)$ and write its log likelihood $\ell$.
b. Choose a differentiable function $f_\phi$ that predicts parameters $\theta$ from a feature vector, i.e.\ $f_\phi(x_i) = \theta_i$.
c. <span style="color:blue">Load the _iris_ dataset with `data(iris)` and split it into train and test subsets.</span>
d. <span style="color:blue">Use gradient descent to find parameters $\phi$ that minimize the negative log likelihood on the _iris_ dataset (equivalently: maximize the log likelihood). Reminder: gradient descent is an iterative optimization procedure $\phi_{t+1} = \phi_t - \eta \nabla_\phi \ell$. Try $\eta = 0.01$ and run optimization for 30 steps. Compute the gradient with `numDeriv::grad`.</span>
e. <span style="color:blue">Print the classification accuracy for the train and test subsets.</span>
```
<div class="fold">
```{solution, echo = togs}
a. We pick the categorical distribution.
b. Categorical distribution parameters are class probabilities that sum to 1. If there are $m$ classes, we can pick any differentiable function that takes as input a vector of features and predicts a vector of size $m$ whose elements are real numbers. We can then use a softmax transformation to map the predicted vector into one with non-negative entries that sum to 1. For simplicity, we can pick a linear transformation with $\phi = (W, b)$, followed by softmax:
\begin{align*}
f_\phi(x) &= \textrm{softmax}(Wx + b), \\
\textrm{softmax}(u)_i &= \frac{\exp(u_i)}{\sum_{j=1}^m \exp(u_j)},
\end{align*}
where $W \in \mathbb{R}^{d\times m}, b \in \mathbb{R}^m$ and $d$ is the number of features.
```
```{r, echo = togs, message = FALSE, eval = togs, warning=FALSE}
data(iris)
head(iris)
# Model:
# y ~ Categorical(softmax(weights * features + bias))
# Want to maximize the (log) likelihood of y w.r.t. weights and bias.
# Need gradient of log likelihood w.r.t. weights and bias.
# Proceed by gradient descent on negative log likelihood.
weights <- matrix(data=rnorm(4 * 3), nrow=4, ncol=3)
bias <- matrix(data=rnorm(3), nrow=1, ncol=3)
model <- function(features, weights, bias) {
# parameters is a 5-element vector. First four are weights, last is bias.
return(t(features %*% weights + bias))
}
softmax <- function(v) {
return(exp(v) / sum(exp(v)))
}
categorical_mass <- function(targets, probs) {
# targets: matrix of size (n_data, n_classes) whose rows are one-hot vectors
# probs: matrix of size (n_data, n_classes) whose rows are class probabilities
apply(probs * targets, 1, sum)
}
predict_probs <- function(features, model, parameters) {
weights <- parameters[1:4, ]
bias <- parameters[5, ]
u <- model(features, weights, bias)
apply(u, 1, softmax)
}
accuracy <- function(features, targets, model, parameters) {
probs <- predict_probs(features, model, parameters)
argmax_mat <- t(apply(probs, 1, function(v) {v == max(v)}))
correct_predictions <- apply(argmax_mat * targets, 1, sum)
return(mean(correct_predictions))
}
neg_log_lik <- function(features, targets, model, parameters) {
probs <- predict_probs(features, model, parameters)
-sum(log(categorical_mass(targets, probs)))
}
grad_neg_log_lik <- function(features, targets, model, parameters){
numDeriv::grad(function(par){neg_log_lik(features, targets, model, par)}, parameters)
}
gradient_descent <- function(initial_parameters, features, targets, step_size = 0.01, n_steps = 30) {
parameters <- initial_parameters
for (i in 1:n_steps) {
print(sprintf("[%d] loss: %.4f, accuracy: %.2f", i, neg_log_lik(features, targets, model, parameters), accuracy(features, targets, model, parameters)))
parameters <- parameters - step_size * grad_neg_log_lik(features, targets, model, parameters)
}
return(parameters)
}
x <- as.matrix(subset(iris, select=-c(Species)))
y <- matrix(nrow=nrow(iris), ncol=3)
y[, 1] <- iris$Species == "setosa"
y[, 2] <- iris$Species == "versicolor"
y[, 3] <- iris$Species == "virginica"
# Take an equal number of representatives for every class for the training and test subsets
# Note: code is written so that shuffling does not matter during optimization
x_train <- x[c(1:35, 51:85, 101:135), ]
y_train <- y[c(1:35, 51:85, 101:135), ]
x_test <- x[-c(1:35, 51:85, 101:135), ]
y_test <- y[-c(1:35, 51:85, 101:135), ]
set.seed(0)
optimized_parameters <- gradient_descent(rbind(weights, bias), x_train, y_train)
accuracy(x_train, y_train, model, optimized_parameters)
accuracy(x_test, y_test, model, optimized_parameters)
```
</div>
## Fisher information
```{exercise}
Let us assume a Poisson likelihood.
a. Derive the MLE estimate of the mean.
b. Derive the Fisher information.
c. <span style="color:blue">For the data below compute the MLE and construct confidence intervals.</span>
d. <span style="color:blue">Use bootstrap to construct the CI for the mean. Compare with c) and discuss.</span>
```
```{r, message = FALSE, warning=FALSE}
x <- c(2, 5, 3, 1, 2, 1, 0, 3, 0, 2)
```
<div class="fold">
```{solution, echo = togs}
a. The log likelihood of the Poisson is
\begin{align*}
l(\lambda; x) = \sum_{i=1}^n x_i \ln \lambda - n \lambda - \sum_{i=1}^n \ln x_i!
\end{align*}
Taking the derivative and equating with 0 we get
\begin{align*}
\frac{1}{\hat{\lambda}}\sum_{i=1}^n x_i - n &= 0 \\
\hat{\lambda} &= \frac{1}{n} \sum_{i=1}^n x_i.
\end{align*}
Since $\lambda$ is the mean parameter, this was expected.
b. For the Fischer information, we first need the second derivative, which is
\begin{align*}
- \lambda^{-2} \sum_{i=1}^n x_i. \\
\end{align*}
Now taking the expectation of the negative of the above, we get
\begin{align*}
E[\lambda^{-2} \sum_{i=1}^n x_i] &= \lambda^{-2} E[\sum_{i=1}^n x_i] \\
&= \lambda^{-2} n \lambda \\
&= \frac{n}{\lambda}.
\end{align*}
```
```{r, echo = togs, message = FALSE, eval = togs, warning=FALSE}
set.seed(1)
x <- c(2, 5, 3, 1, 2, 1, 0, 3, 0, 2)
lambda_hat <- mean(x)
finfo <- length(x) / lambda_hat
mle_CI <- c(lambda_hat - 1.96 * sqrt(1 / finfo),
lambda_hat + 1.96 * sqrt(1 / finfo))
boot_lambda <- c()
nboot <- 1000
for (i in 1:nboot) {
tmp_x <- sample(x, length(x), replace = T)
boot_lambda[i] <- mean(tmp_x)
}
boot_CI <- c(quantile(boot_lambda, 0.025),
quantile(boot_lambda, 0.975))
mle_CI
boot_CI
```
</div>
```{exercise}
a. Find the Fisher information matrix for the Gamma distribution.
b. <span style="color:blue">Generate 20 samples from a Gamma distribution and plot a confidence ellipse of the inverse of Fisher information matrix around the ML estimates of the parameters. Also plot the theoretical values. Repeat the sampling several times. What do you observe?</span>
c. Discuss what a non-diagonal Fisher matrix implies.
Hint: The digamma function is defined as $\psi(x) = \frac{\frac{d}{dx} \Gamma(x)}{\Gamma(x)}$. Additionally, you do not need to evaluate $\frac{d}{dx} \psi(x)$. To calculate its value in R, use package **numDeriv**.
```
<div class="fold">
```{solution, echo = togs}
a. The log likelihood of the Gamma is
\begin{equation*}
l(\alpha, \beta; x) = n \alpha \ln \beta - n \ln \Gamma(\alpha) + (\alpha - 1) \sum_{i=1}^n \ln x_i - \beta \sum_{i=1}^n x_i.
\end{equation*}
Let us calculate the derivatives.
\begin{align*}
\frac{\partial}{\partial \alpha} l(\alpha, \beta; x) &= n \ln \beta - n \psi(\alpha) + \sum_{i=1}^n \ln x_i, \\
\frac{\partial}{\partial \beta} l(\alpha, \beta; x) &= \frac{n \alpha}{\beta} - \sum_{i=1}^n x_i, \\
\frac{\partial^2}{\partial \alpha \beta} l(\alpha, \beta; x) &= \frac{n}{\beta}, \\
\frac{\partial^2}{\partial \alpha^2} l(\alpha, \beta; x) &= - n \frac{\partial}{\partial \alpha} \psi(\alpha), \\
\frac{\partial^2}{\partial \beta^2} l(\alpha, \beta; x) &= - \frac{n \alpha}{\beta^2}.
\end{align*}
The Fisher information matrix is then
\begin{align*}
I(\alpha, \beta) =
- E[
\begin{bmatrix}
- n \psi'(\alpha) & \frac{n}{\beta} \\
\frac{n}{\beta} & - \frac{n \alpha}{\beta^2}
\end{bmatrix}
] =
\begin{bmatrix}
n \psi'(\alpha) & - \frac{n}{\beta} \\
- \frac{n}{\beta} & \frac{n \alpha}{\beta^2}
\end{bmatrix}
\end{align*}
c. A non-diagonal Fisher matrix implies that the parameter estimates are linearly dependent.
```
```{r, echo = togs, message = FALSE, eval = togs, warning=FALSE}
set.seed(1)
n <- 20
pars_theor <- c(5, 2)
x <- rgamma(n, 5, 2)
# MLE for alpha and beta
log_lik <- function (pars, x) {
n <- length(x)
return (- (n * pars[1] * log(pars[2]) -
n * log(gamma(pars[1])) +
(pars[1] - 1) * sum(log(x)) -
pars[2] * sum(x)))
}
my_optim <- optim(par = c(1,1), fn = log_lik, method = "L-BFGS-B",
lower = c(0.001, 0.001), upper = c(8, 8), x = x)
pars_mle <- my_optim$par
fish_mat <- matrix(data = NA, nrow = 2, ncol = 2)
fish_mat[1,2] <- - n / pars_mle[2]
fish_mat[2,1] <- - n / pars_mle[2]
fish_mat[2,2] <- (n * pars_mle[1]) / (pars_mle[2]^2)
fish_mat[1,1] <- n * grad(digamma, pars_mle[1])
fish_mat_inv <- solve(fish_mat)
est_ellip <- ellipse(pars_mle, fish_mat_inv, draw = FALSE)
colnames(est_ellip) <- c("X1", "X2")
est_ellip <- as.data.frame(est_ellip)
ggplot() +
geom_point(data = data.frame(x = pars_mle[1], y = pars_mle[2]), aes(x = x, y = y)) +
geom_path(data = est_ellip, aes(x = X1, y = X2)) +
geom_point(aes(x = pars_theor[1], y = pars_theor[2]), color = "red") +
geom_text(aes(x = pars_theor[1], y = pars_theor[2], label = "Theoretical parameters"),
color = "red",
nudge_y = -0.2)
```
</div>
```{exercise}
Find the unit Fisher information matrix for the univariate normal distribution.
```
<div class="fold">
```{solution, echo = togs}
The normal density is
\begin{equation*}
p(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left(-0.5 \frac{(x-\mu)^2}{\sigma^2}\right).
\end{equation*}
Its logarithm is
\begin{equation*}
\log p(x; \mu, \sigma) = -0.5\log(2\pi) - \log \sigma - 0.5 \frac{(x-\mu)^2}{\sigma^2}.
\end{equation*}
The second order partial derivatives are
\begin{align*}
\frac{\partial}{\partial \mu^2} p(x; \mu, \sigma) &= -\frac{1}{\sigma^2}, \\
\frac{\partial}{\partial \mu \partial \sigma} p(x; \mu, \sigma) &= -\frac{2(x-\mu)^2}{\sigma^3}, \\
\frac{\partial^2}{\partial \sigma^2} p(x; \mu, \sigma) &= \frac{1}{\sigma^2} - \frac{3(x-\mu)^2}{\sigma^4}.
\end{align*}
The unit Fisher information matrix is then
\begin{align*}
I(\mu, \sigma) =
- E\left[
\begin{bmatrix}
-\frac{1}{\sigma^2} & -\frac{2(x-\mu)}{\sigma^3} \\
-\frac{2(x-\mu)}{\sigma^3} & \frac{1}{\sigma^2} - \frac{3(x-\mu)^2}{\sigma^4}
\end{bmatrix}
\right] =
\begin{bmatrix}
\frac{1}{\sigma^2} & 0 \\
0 & \frac{2}{\sigma^2}
\end{bmatrix},
\end{align*}
where we used the fact that $E[X - \mu] = 0$ and $E[(X - \mu)^2] = \sigma^2$.
```
</div>
```{exercise}
Find the unit Fisher information for the binomial distribution with fixed $n$.
```
<div class="fold">
```{solution, echo = togs}
The binomial mass is
\begin{equation*}
P(X = k; n, p) = \binom{n}{k}p^k(1-p)^{n-k}.
\end{equation*}
Its logarithm is
\begin{equation*}
\log P(X = k; n, p) = \log \binom{n}{k} + k\log p + (n-k)\log(1-p).
\end{equation*}
The partial derivatives are
\begin{align*}
\frac{\partial}{\partial p} \log P(X = k; n, p) &= \frac{k}{p} - \frac{n-k}{1-p}, \\
\frac{\partial^2}{\partial p^2} \log P(X = k; n, p) &= -\frac{k}{p^2} - \frac{n-k}{(1-p)^2}.
\end{align*}
The unit Fisher information is
\begin{align*}
I(p) =
- E\left[ \frac{\partial^2}{\partial p^2} \log P(X = k; n, p) \right] =
\frac{n}{p(1-p)},
\end{align*}
where we used the fact that $E[k] = np$ for $k \sim X$.
```
</div>
## The German tank problem
```{exercise, name = "The German tank problem"}
During WWII the allied intelligence were faced with an important problem of estimating the total production of certain German tanks, such as the Panther. What turned out to be a successful approach was to estimate the maximum from the serial numbers of the small sample of captured or destroyed tanks (describe the statistical model used).
a. What assumptions were made by using the above model? Do you think they are reasonable assumptions in practice?
b. Show that the plug-in estimate for the maximum (i.e. the maximum of the sample) is a biased estimator.
c. Derive the maximum likelihood estimate of the maximum.
d. Check that the following estimator is not biased: $\hat{n} = \frac{k + 1}{k}m - 1$.
```
<div class="fold">
```{solution, echo = togs}
The data are the serial numbers of the tanks. The parameter is $n$, the total production of the tank. The distribution of the serial numbers is a discrete uniform distribution over all serial numbers.
a. One of the assumptions is that we have i.i.d samples, however in practice this might not be true, as some tanks produced later could be sent to the field later, therefore already in theory we would not be able to recover some values from the population.
b. To find the expected value we first need to find the distribution of $m$. Let us start with the CDF.
\begin{align*}
F_m(x) = P(Y_1 < x,...,Y_k < x).
\end{align*}
If $x < k$ then $F_m(x) = 0$ and if $x \geq 1$ then $F_m(x) = 1$. What about between those values. So the probability that the maximum value is less than or equal to $m$ is just the number of possible draws from $Y$ that are all smaller than $m$, divided by all possible draws. This is $\frac{{x}\choose{k}}{{n}\choose{k}}$. The PDF on the suitable bounds is then
\begin{align*}
P(m = x) = F_m(x) - F_m(x - 1) = \frac{\binom{x}{k} - \binom{x - 1}{k}}{\binom{n}{k}} = \frac{\binom{x - 1}{k - 1}}{\binom{n}{k}}.
\end{align*}
Now we can calculate the expected value of $m$ using some combinatorial identities.
\begin{align*}
E[m] &= \sum_{i = k}^n i \frac{{i - 1}\choose{k - 1}}{{n}\choose{k}} \\
&= \sum_{i = k}^n i \frac{\frac{(i - 1)!}{(k - 1)!(i - k)!}}{{n}\choose{k}} \\
&= \frac{k}{\binom{n}{k}}\sum_{i = k}^n \binom{i}{k} \\
&= \frac{k}{\binom{n}{k}} \binom{n + 1}{k + 1} \\
&= \frac{k(n + 1)}{k + 1}.
\end{align*}
The bias of this estimator is then
\begin{align*}
E[m] - n = \frac{k(n + 1)}{k + 1} - n = \frac{k - n}{k + 1}.
\end{align*}
c. The probability that we observed our sample $Y = {Y_1, Y_2,...,,Y_k}$ given $n$ is $\frac{1}{{n}\choose{k}}$. We need to find such $n^*$ that this function is maximized. Additionally, we have a constraint that $n^* \geq m = \max{(Y)}$. Let us plot this function for $m = 10$ and $k = 4$.
```
```{r, echo = togs, message = FALSE, eval = togs, warning=FALSE}
library(ggplot2)
my_fun <- function (x, m, k) {
tmp <- 1 / (choose(x, k))
tmp[x < m] <- 0
return (tmp)
}
x <- 1:20
y <- my_fun(x, 10, 4)
df <- data.frame(x = x, y = y)
ggplot(data = df, aes(x = x, y = y)) +
geom_line()
```
```{solution, echo = togs}
c. (continued) We observe that the maximum of this function lies at the maximum value of the sample. Therefore $n^* = m$ and ML estimate equals the plug-in estimate.
d.
\begin{align*}
E[\hat{n}] &= \frac{k + 1}{k} E[m] - 1 \\
&= \frac{k + 1}{k} \frac{k(n + 1)}{k + 1} - 1 \\
&= n.
\end{align*}
```
</div>