-
Notifications
You must be signed in to change notification settings - Fork 5
/
assoc.wdl
1822 lines (1681 loc) · 73.2 KB
/
assoc.wdl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
version development
## Copyright (c) 2021-2024 Giulio Genovese
##
## Version 2024-09-27
##
## Contact Giulio Genovese <[email protected]>
##
## This WDL workflow runs association analyses with REGENIE and PLINK2
##
## Cromwell version support
## - Successfully tested on v87
##
## Distributed under terms of the MIT License
struct Reference {
File? fasta
File fasta_fai
Int min_chr_len
Int n_x_chr
Int? par_bp1
Int? par_bp2
File? cyto_file
File genetic_map_file
String? pca_exclusion_regions
File? gff3_file # http://ftp.ensembl.org/pub/current_gff3/homo_sapiens/
File? rsid_vcf_file # http://ftp.ncbi.nlm.nih.gov/snp/latest_release/VCF/
File? rsid_vcf_idx
}
workflow assoc {
input {
String sample_set_id
String? sex_specific # male female
Float max_win_size_cm_step2 = 20.0
File sample_tsv_file
File? keep_samples_file
File? remove_samples_file
Int min_mac_step1 = 10
Float min_maf_step1 = 0.01
Int min_mac_step2 = 10
Float? min_info_step2
File? covar_tsv_file
File? pheno_tsv_file
String? pop
String dosage_field = "DS"
String space_character = "_"
Boolean binary = true
Int min_case_count = 20
Int min_sex_count = 20
Int bsize_step1 = 1000
Int bsize_step2 = 400
Int max_vif = 2000
Float max_corr = 0.9999
Float cis_plot_min_af = 0.01
Boolean loocv = true
String? regenie_step0_extra_args
String? regenie_step1_extra_args
String? regenie_step2_extra_args
String? plink_extra_args
Boolean step1 = true
Boolean pgt_output = false
Boolean pca = false
Boolean step2 = true
Boolean cis = false
Boolean plot = true
Int pca_ndim = 20
Int pca_cpus = 2
File? input_loco_lst
String? input_loco_path
File? input_firth_lst
String? input_firth_path
String ref_name = "GRCh38"
String? ref_path
String? ref_fasta
String? ref_fasta_fai
Int? min_chr_len
Int? n_x_chr
Int? par_bp1
Int? par_bp2
String? cyto_file
String? genetic_map_file
String? pca_exclusion_regions
String? gff3_file
String? rsid_vcf_file
String? rsid_vcf_idx
File? mocha_tsv_file # batch_id path pgt_vcf pgt_vcf_index
String? mocha_data_path
File? impute_tsv_file # batch_id path chr1_imp_vcf chr1_imp_vcf_index chr2_imp_vcf chr2_imp_vcf_index ...
String? impute_data_path
String basic_bash_docker = "debian:stable-slim"
String pandas_docker = "amancevice/pandas:slim"
String docker_repository = "us.gcr.io/mccarroll-mocha"
String bcftools_docker = "bcftools:1.20-20240927"
String regenie_docker = "regenie:1.20-20240927"
String r_mocha_docker = "r_mocha:1.20-20240927"
}
String docker_repository_with_sep = docker_repository + if docker_repository != "" && docker_repository == sub(docker_repository, "/$", "") then "/" else ""
String filebase = sub(sample_set_id, "[ \t]", "_") + if defined(sex_specific) then space_character + select_first([sex_specific]) else ""
String ref_path_with_sep = select_first([ref_path, ""]) + if defined(ref_path) && select_first([ref_path]) == sub(select_first([ref_path]), "/$", "") then "/" else ""
Reference ref = object {
fasta: if defined(ref_fasta) then ref_path_with_sep + select_first([ref_fasta]) else if ref_name == "GRCh38" then ref_path_with_sep + "GCA_000001405.15_GRCh38_no_alt_analysis_set.fna" else if ref_name == "GRCh37" then ref_path_with_sep + "human_g1k_v37.fasta" else None,
fasta_fai: if defined(ref_fasta_fai) then ref_path_with_sep + select_first([ref_fasta_fai]) else if ref_name == "GRCh38" then ref_path_with_sep + "GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.fai" else if ref_name == "GRCh37" then ref_path_with_sep + "human_g1k_v37.fasta.fai" else None,
min_chr_len: select_first([min_chr_len, 3000000]),
n_x_chr: select_first([n_x_chr, 23]),
par_bp1: if defined(par_bp1) then select_first([par_bp1]) else if ref_name == "GRCh38" then 2781479 else if ref_name == "GRCh37" then 2699520 else None,
par_bp2: if defined(par_bp2) then select_first([par_bp2]) else if ref_name == "GRCh38" then 155701383 else if ref_name == "GRCh37" then 154931044 else None,
cyto_file: if defined(ref_path) || defined(cyto_file) then ref_path_with_sep + select_first([cyto_file, "cytoBand.txt.gz"]) else None,
genetic_map_file: if defined(genetic_map_file) then ref_path_with_sep + select_first([genetic_map_file]) else if ref_name == "GRCh38" then ref_path_with_sep + "genetic_map_hg38_withX.txt.gz" else if ref_name == "GRCh37" then ref_path_with_sep + "genetic_map_hg19_withX.txt.gz" else None,
pca_exclusion_regions: if defined(pca_exclusion_regions) then pca_exclusion_regions else if ref_name == "GRCh38" then "5:43999898-52204166,6:24999772-33532223,8:8142478-12142491,11:44978449-57232526" else if ref_name == "GRCh37" then "5:44000000-51500000,6:25000000-33500000,8:8000000-12000000,11:45000000-57000000" else None,
gff3_file: if defined(gff3_file) then ref_path_with_sep + select_first([gff3_file]) else None,
rsid_vcf_file: if defined(rsid_vcf_file) then ref_path_with_sep + select_first([rsid_vcf_file]) else None,
rsid_vcf_idx: if defined(rsid_vcf_idx) then ref_path_with_sep + select_first([rsid_vcf_idx]) else None
}
Array[Array[String]] ref_fasta_fai_tbl = transpose(read_tsv(ref.fasta_fai))
scatter (idx in range(length(ref_fasta_fai_tbl[0]))) {
Int fai_len = ref_fasta_fai_tbl[1][idx]
if (fai_len > ref.min_chr_len && ref_fasta_fai_tbl[0][idx] != "Y" && ref_fasta_fai_tbl[0][idx] != "chrY") {
String chrs = ref_fasta_fai_tbl[0][idx]
Int lens = ref_fasta_fai_tbl[1][idx]
}
}
if (defined(pheno_tsv_file)) {
call prune_file {
input:
sex_specific = sex_specific,
sample_tsv_file = sample_tsv_file,
keep_samples_file = keep_samples_file,
remove_samples_file = remove_samples_file,
covar_tsv_file = covar_tsv_file,
pheno_tsv_file = select_first([pheno_tsv_file]),
space_character = space_character,
binary = binary,
min_case_count = min_case_count,
min_sex_count = min_sex_count,
filebase = filebase,
docker = basic_bash_docker
}
}
# REGENIE step 1
if (step1 || pca) {
call ref_scatter as ref_scatter_step1 {
input:
chrs = select_all(chrs),
lens = select_all(lens),
genetic_map_file = ref.genetic_map_file,
max_win_size_cm = 300.0, # until regenie updates, step 1 cannot be parallelized beyond the 23 chromosomes
overlap_size_cm = 0.0,
genetic_map_order = true,
docker = pandas_docker
}
# read table with batches information (scatter could be avoided if there was a tail() function)
Array[Array[String]] mocha_tsv = read_tsv(select_first([mocha_tsv_file]))
Int n_mocha_batches = length(mocha_tsv)-1
scatter (idx in range(n_mocha_batches)) { Array[String] mocha_tsv_rows = mocha_tsv[(idx+1)] }
Map[String, Array[String]] mocha_tbl = as_map(zip(mocha_tsv[0], transpose(mocha_tsv_rows)))
# check if path is in mocha table (see http://github.com/openwdl/wdl/issues/305)
Boolean is_path_in_mocha_tbl = length(collect_by_key(zip(flatten([keys(mocha_tbl),["path"]]),range(length(keys(mocha_tbl))+1)))["path"])>1
# compute data paths for each batch
scatter (idx in range(n_mocha_batches)) {
String mocha_data_paths_with_sep = (if defined(mocha_data_path) then sub(select_first([mocha_data_path]), "/$", "") + "/" else "") +
(if is_path_in_mocha_tbl then sub(mocha_tbl["path"][idx], "/$", "") + "/" else "")
}
scatter (idx in range(n_mocha_batches)) {
call vcf_scatter as pgt_scatter {
input:
vcf_file = mocha_data_paths_with_sep[idx] + mocha_tbl["pgt_vcf"][idx],
intervals_bed = ref_scatter_step1.intervals_bed,
keep_samples_file = prune_file.keep,
remove_samples_file = remove_samples_file,
docker = docker_repository_with_sep + bcftools_docker
}
}
Array[Array[File]] interval_slices = transpose(pgt_scatter.vcf_files)
scatter (idx in range(length(interval_slices))) {
if (length(interval_slices[idx])>1) {
call vcf_merge as pgt_merge {
input:
vcf_files = interval_slices[idx],
filebase = filebase + "." + idx,
docker = docker_repository_with_sep + bcftools_docker
}
}
call pgt_prune {
input:
vcf_file = select_first([pgt_merge.vcf_file, interval_slices[idx][0]]),
sample_tsv_file = sample_tsv_file,
space_character = space_character,
min_mac = min_mac_step1,
min_maf = min_maf_step1,
autosome_ct = if ref.n_x_chr == 23 then None else ref.n_x_chr - 1,
docker = docker_repository_with_sep + regenie_docker
}
Int n_smpls = select_first([pgt_merge.n_smpls, pgt_scatter.n_smpls[0]])
if (step1) {
call regenie_step0 {
input:
idx = idx,
n_phenos = length(select_first([prune_file.pheno_names])),
n_covars = length(flatten(select_all([prune_file.covar_names]))),
n_smpls = n_smpls,
n_markers = pgt_prune.n_markers,
bed_file = pgt_prune.bed_file,
bim_file = pgt_prune.bim_file,
fam_file = pgt_prune.fam_file,
covar_file = prune_file.covar,
pheno_file = select_first([prune_file.pheno]),
binary = binary,
bsize = bsize_step1,
loocv = loocv,
autosome_ct = if ref.n_x_chr == 23 then None else ref.n_x_chr - 1,
regenie_step0_extra_args = regenie_step0_extra_args,
filebase = filebase,
docker = docker_repository_with_sep + regenie_docker
}
}
}
call pgt_concat {
input:
bed_files = pgt_prune.bed_file,
bim_files = pgt_prune.bim_file,
fam_files = pgt_prune.fam_file,
filebase = filebase + ".prune",
docker = basic_bash_docker
}
if (pca && n_smpls[0] >= 50) {
call plink_pca {
input:
n_smpls = n_smpls[0],
n_markers = pgt_concat.n_markers,
pca_ndim = pca_ndim,
pca_cpus = pca_cpus,
ids_files = pgt_scatter.ids_lines,
bed_file = pgt_concat.bed_file,
bim_file = pgt_concat.bim_file,
fam_file = pgt_concat.fam_file,
exclusion_regions = ref.pca_exclusion_regions,
autosome_ct = if ref.n_x_chr == 23 then None else ref.n_x_chr - 1,
filebase = filebase,
docker = docker_repository_with_sep + regenie_docker
}
}
if (step1) {
Array[Array[File]] l0_files = transpose(select_all(regenie_step0.l0_files))
scatter (idx in range(length(l0_files))) {
call regenie_step1 {
input:
pheno_name = select_first([prune_file.pheno_names])[idx],
n_covars = length(flatten(select_all([prune_file.covar_names]))),
n_smpls = n_smpls[0],
n_markers = pgt_concat.n_markers,
bed_file = pgt_concat.bed_file,
bim_file = pgt_concat.bim_file,
fam_file = pgt_concat.fam_file,
covar_file = prune_file.covar,
pheno_file = select_first([prune_file.pheno]),
n_markers_array = pgt_prune.n_markers,
l0_files = l0_files[idx],
binary = binary,
bsize = bsize_step1,
loocv = loocv,
autosome_ct = if ref.n_x_chr == 23 then None else ref.n_x_chr - 1,
regenie_step1_extra_args = regenie_step1_extra_args,
filebase = filebase + space_character + select_first([prune_file.pheno_names])[idx],
docker = docker_repository_with_sep + regenie_docker
}
String? loco_lines = if regenie_step1.loco_line == "" then None else regenie_step1.loco_line
File? loco_file = if defined(loco_lines) then regenie_step1.loco_file else None
if (binary) {
String? firth_lines = if select_first([regenie_step1.firth_line]) == "" then None else select_first([regenie_step1.firth_line])
File? firth_file = if defined(firth_lines) then select_first([regenie_step1.firth_file]) else None
}
}
# unnecessary task for compatibility with Terra http://support.terra.bio/hc/en-us/community/posts/360071465631-write-lines-write-map-write-tsv-write-json-fail-when-run-in-a-workflow-rather-than-in-a-task
call serialize_lines as loco_lst { input: lines = select_all(loco_lines), filename = filebase + "_pred.list", docker = basic_bash_docker }
if (binary) {
call serialize_lines as firth_lst { input: lines = select_all(firth_lines), filename = filebase + "_firth.list", docker = basic_bash_docker }
}
}
}
if (!step1) {
if (defined(input_loco_lst) && defined(input_loco_path)) {
scatter (line in read_lines(select_first([input_loco_lst]))) {
File input_loco_files = sub(select_first([input_loco_path]), "/$", "") + '/' + sub(line, "^.*[ \t]", "")
}
}
if (binary && defined(input_firth_lst) && defined(input_firth_path)) {
scatter (line in read_lines(select_first([input_firth_lst]))) {
File input_firth_files = sub(select_first([input_firth_path]), "/$", "") + '/' + sub(line, "^.*[ \t]", "")
}
}
}
# REGENIE step 2
if (step2 || cis) {
call ref_scatter as ref_scatter_step2 {
input:
chrs = select_all(chrs),
lens = select_all(lens),
genetic_map_file = ref.genetic_map_file,
max_win_size_cm = max_win_size_cm_step2,
overlap_size_cm = 0.0,
genetic_map_order = false,
docker = pandas_docker
}
Array[Array[String]] intervals_tbl = transpose(read_tsv(ref_scatter_step2.intervals_bed))
# this is a trick to table how many intervals you will use for each chromosome
Map[String, Array[Int]] chr_map = collect_by_key(zip(intervals_tbl[0], range(length(intervals_tbl[0]))))
# read table with batches information (scatter could be avoided if there was a tail() function)
Array[Array[String]] impute_tsv = read_tsv(select_first([impute_tsv_file]))
Int n_impute_batches = length(impute_tsv)-1
scatter (idx in range(n_impute_batches)) { Array[String] impute_tsv_rows = impute_tsv[(idx+1)] }
Map[String, Array[String]] impute_tbl = as_map(zip(impute_tsv[0], transpose(impute_tsv_rows)))
# check if path is in impute table (see http://github.com/openwdl/wdl/issues/305)
Boolean is_path_in_impute_tbl = length(collect_by_key(zip(flatten([keys(impute_tbl),["path"]]),range(length(keys(impute_tbl))+1)))["path"])>1
# compute data paths for each batch
scatter (idx in range(n_impute_batches)) {
String impute_data_paths_with_sep = (if defined(impute_data_path) then sub(select_first([impute_data_path]), "/$", "") + "/" else "") +
(if is_path_in_impute_tbl then sub(impute_tbl["path"][idx], "/$", "") + "/" else "")
}
scatter (p in cross(range(n_impute_batches), range(length(select_all(chrs))))) {
File imp_vcf_file = impute_data_paths_with_sep[p.left] + impute_tbl[("chr" + sub(select_all(chrs)[p.right], "^chr", "") + "_imp_vcf")][p.left]
if (length(chr_map[(select_all(chrs)[p.right])]) > 1) {
call vcf_scatter {
input:
vcf_file = imp_vcf_file,
intervals_bed = ref_scatter_step2.intervals_bed,
keep_samples_file = prune_file.keep,
remove_samples_file = remove_samples_file,
chr = select_all(chrs)[p.right],
dosage_field = dosage_field,
docker = docker_repository_with_sep + bcftools_docker
}
}
Int cross_idx = p.right
Array[File] scatter_vcf_files = select_first([vcf_scatter.vcf_files, [imp_vcf_file]])
}
Map[Int, Array[Array[File]]] idx2vcf_files = collect_by_key(zip(cross_idx, scatter_vcf_files))
scatter (idx in range(length(select_all(chrs)))) { Array[Array[File]] slices_vcf_files = transpose(idx2vcf_files[idx]) }
Array[Array[File]] matrix_vcf_files = flatten(slices_vcf_files)
if (step2) {
# generate list of expected output association files
scatter (line in read_lines(select_first([firth_lst.file, loco_lst.file, input_firth_lst, input_loco_lst]))) {
String regenie_suffix = sub(line, " .*$", "") + (if defined(pop) then "." + select_first([pop]) else "") + ".regenie.gz" # http://github.com/broadinstitute/cromwell/issues/5549
}
}
# merging has to happen at the VCF level as plink2 does not currently merge pgen files
# http://www.cog-genomics.org/plink/2.0/data#pmerge
scatter (idx in range(length(matrix_vcf_files))) {
if (length(matrix_vcf_files[idx])>1 || defined(min_mac_step2)) {
call vcf_merge {
input:
vcf_files = matrix_vcf_files[idx],
min_mac = min_mac_step2,
filebase = filebase + "." + idx,
docker = docker_repository_with_sep + bcftools_docker
}
}
call vcf2pgen {
input:
vcf_file = select_first([vcf_merge.vcf_file, matrix_vcf_files[idx][0]]),
sample_tsv_file = sample_tsv_file,
dosage_field = dosage_field,
space_character = space_character,
autosome_ct = if ref.n_x_chr == 23 then None else ref.n_x_chr - 1,
par_bp1 = ref.par_bp1,
par_bp2 = ref.par_bp2,
docker = docker_repository_with_sep + regenie_docker
}
if (step2) {
call regenie_step2 {
input:
chr = intervals_tbl[0][idx],
n_phenos = length(select_first([prune_file.pheno_names])),
n_covars = length(flatten(select_all([prune_file.covar_names]))),
n_smpls = vcf2pgen.n_smpls,
n_markers = vcf2pgen.n_markers,
fasta_fai = ref.fasta_fai,
pgen_file = vcf2pgen.pgen_file,
pvar_file = vcf2pgen.pvar_file,
psam_file = vcf2pgen.psam_file,
covar_file = prune_file.covar,
pheno_file = select_first([prune_file.pheno]),
pop = pop,
regenie_suffix = select_first([regenie_suffix]), # http://github.com/broadinstitute/cromwell/issues/5549
binary = binary,
bsize = bsize_step2,
min_info = min_info_step2,
autosome_ct = if ref.n_x_chr == 23 then None else ref.n_x_chr - 1,
regenie_step2_extra_args = regenie_step2_extra_args,
loco_lst = select_first([loco_lst.file, input_loco_lst]),
loco_files = select_first([loco_files, input_loco_files]),
firth_lst = if binary then select_first([firth_lst.file, input_firth_lst]) else None,
firth_files = if binary then select_first([firth_files, input_firth_files]) else None,
docker = docker_repository_with_sep + regenie_docker
}
}
}
if (step2) {
call vcf_concat {
input:
vcf_files = select_all(regenie_step2.vcf_file),
ref_fasta = if defined(ref.gff3_file) then ref.fasta else None,
fasta_fai = if defined(ref.gff3_file) then ref.fasta_fai else None,
gff3_file = ref.gff3_file,
rsid_vcf_file = ref.rsid_vcf_file,
rsid_vcf_idx = ref.rsid_vcf_idx,
filebase = filebase + (if length(select_first([prune_file.pheno_names])) == 1 then "." + select_first([prune_file.pheno_names])[0] else "") + (if defined(pop) then "." + select_first([pop]) else "") + ".gwas",
docker = docker_repository_with_sep + bcftools_docker
}
Array[Array[File]] regenie_matrix_files = transpose(select_all(regenie_step2.regenie_files))
scatter (idx in range(length(regenie_matrix_files))) {
call assoc_concat as regenie_concat {
input:
assoc_files = regenie_matrix_files[idx],
n_x_chr = ref.n_x_chr,
filebase = filebase + "." + select_first([regenie_suffix])[idx],
docker = docker_repository_with_sep + bcftools_docker
}
if (plot && regenie_concat.has_data) {
call assoc_plot as regenie_plot {
input:
assoc_file = regenie_concat.file,
genome = if ref_name == "GRCh38" || ref_name == "GRCh37" then ref_name else None,
cyto_file = ref.cyto_file,
autosome_ct = if ref.n_x_chr == 23 then None else ref.n_x_chr - 1,
filebase = basename(filebase + "." + select_first([regenie_suffix])[idx], ".gz"),
docker = docker_repository_with_sep + r_mocha_docker
}
}
}
}
if (cis) {
Array[String]+ lines = if defined(loco_lst.file) || defined(input_loco_lst) then read_lines(select_first([loco_lst.file, input_loco_lst])) else select_first([prune_file.pheno_names])
scatter (idx in range(length(lines))) {
String plink_pheno_names = if defined(loco_lst.file) || defined(input_loco_lst) then sub(lines[idx], " .*$", "") else lines[idx]
String plink_pheno_chrs = sub(sub(sub(plink_pheno_names, "_.*$", ""), "[pq]*$", ""), "Y", "X")
# check if plink_pheno_chrs is present in the chr2idx to know whether the cis association should be run (see http://github.com/openwdl/wdl/issues/305)
Int? cis_idx = if length(collect_by_key(zip(flatten([keys(chr2idx),[plink_pheno_chrs]]),range(length(keys(chr2idx))+1)))[plink_pheno_chrs])>1 then idx else None
}
# this map, given a chromosome (1, 2, ..., X), returns the indexes of the intervals for that chromosomes
scatter (chr in intervals_tbl[0]) { String chr_string = sub(chr, "^chr", "") }
Map[String, Array[Int]] chr2idx = collect_by_key(zip(chr_string, range(length(intervals_tbl[0]))))
# the following code checks that the chromosome name is in the list of available chromosomes
scatter (idx in select_all(cis_idx)) {
Array[Pair[Int, Int]] pheno_interval_pairs = cross([idx], chr2idx[(plink_pheno_chrs[idx])])
}
# maybe I should test whether the interval falls under the event or not
String x_chr_num = ref.n_x_chr
scatter (p in flatten(pheno_interval_pairs)) {
Int pheno_idx = p.left
call plink_glm {
input:
chr_num = sub(plink_pheno_chrs[p.left], "X", x_chr_num),
pheno_name = plink_pheno_names[p.left],
n_phenos = length(select_first([prune_file.pheno_names])),
n_covars = length(flatten(select_all([prune_file.covar_names]))),
n_smpls = vcf2pgen.n_smpls[p.right],
n_markers = vcf2pgen.n_markers[p.right],
pgen_file = vcf2pgen.pgen_file[p.right],
pvar_file = vcf2pgen.pvar_file[p.right],
psam_file = vcf2pgen.psam_file[p.right],
loco_file = if defined(loco_files) || defined(input_loco_files) then select_first([loco_files, input_loco_files])[p.left] else None,
covar_file = prune_file.covar,
pheno_file = select_first([prune_file.pheno]),
binary = binary,
max_vif = max_vif,
max_corr = max_corr,
plink_extra_args = plink_extra_args,
docker = docker_repository_with_sep + regenie_docker
}
}
Map[Int, Array[File]] idx2assoc_files = collect_by_key(zip(pheno_idx, plink_glm.assoc_file))
scatter (idx in select_all(cis_idx)) {
call assoc_concat as plink_concat {
input:
assoc_files = idx2assoc_files[idx],
n_x_chr = ref.n_x_chr,
zst = true,
filebase = filebase + "." + plink_pheno_names[idx] + ".glm." + (if binary then "logistic.hybrid" else "linear") + ".gz",
docker = docker_repository_with_sep + regenie_docker
}
if (plot && plink_concat.has_data) {
call assoc_plot as plink_plot {
input:
assoc_file = plink_concat.file,
genome = if ref_name == "GRCh38" || ref_name == "GRCh37" then ref_name else None,
cyto_file = ref.cyto_file,
autosome_ct = if ref.n_x_chr == 23 then None else ref.n_x_chr - 1,
min_af = cis_plot_min_af,
filebase = filebase + "." + plink_pheno_names[idx] + ".glm." + (if binary then "logistic.hybrid" else "linear"),
docker = docker_repository_with_sep + r_mocha_docker
}
}
}
}
}
output {
File? bed_file = if pgt_output then pgt_concat.bed_file else None
File? bim_file = if pgt_output then pgt_concat.bim_file else None
File? fam_file = if pgt_output then pgt_concat.fam_file else None
File? eigenvec_file = plink_pca.eigenvec_file
File? eigenval_file = plink_pca.eigenval_file
File? pcs_tsv_file = plink_pca.pcs_tsv_file
File? loco_lst_file = loco_lst.file
Array[File]? loco_files = if defined(loco_file) then select_all(select_first([loco_file])) else None
File? firth_lst_file = firth_lst.file
Array[File]? firth_files = if defined(firth_file) then select_all(select_first([firth_file])) else None
File? gwas_vcf_file = vcf_concat.vcf_file
File? gwas_vcf_idx = vcf_concat.vcf_idx
Array[File]? regenie_files = regenie_concat.file
Array[File]? regenie_indexes = regenie_concat.index
Array[File]? regenie_png_files = if step2 && plot then select_all(select_first([regenie_plot.png_file])) else None
Array[File]? plink_files = plink_concat.file
Array[File]? plink_indexes = plink_concat.index
Array[File]? plink_png_files = if cis && plot then select_all(select_first([plink_plot.png_file])) else None
Array[File]? regenie_step0_logs = if step1 then select_all(select_first([regenie_step0.log_file])) else None
Array[File]? regenie_step1_logs = if step1 then select_all(select_first([regenie_step1.log_file])) else None
Array[File]? regenie_step2_logs = if step2 then select_all(select_first([regenie_step2.log_file])) else None
Array[File]? plink_logs = plink_glm.log_file
}
meta {
author: "Giulio Genovese"
email: "[email protected]"
description: "See the [MoChA](http://github.com/freeseek/mocha) website for more information"
}
}
task get_n {
input {
File file
String docker
Int cpu = 1
Int disk_size = 10
Float memory = 3.5
Int preemptible = 1
Int maxRetries = 0
}
command <<<
set -euo pipefail
mv "~{file}" .
grep -v ^# "~{basename(file)}" | wc -l
rm "~{basename(file)}"
>>>
output {
Int n = read_int(stdout())
}
runtime {
docker: docker
cpu: cpu
disks: "local-disk " + disk_size + " HDD"
memory: memory + " GiB"
preemptible: preemptible
maxRetries: maxRetries
}
}
# use of !(a!=b) due to bug Cromwell team will not fix: http://github.com/broadinstitute/cromwell/issues/5602
task prune_file {
input {
String? sex_specific
File sample_tsv_file
File? keep_samples_file
File? remove_samples_file
File? covar_tsv_file
File pheno_tsv_file
String space_character
Boolean binary
Int min_case_count
Int min_sex_count
String filebase
String docker
Int cpu = 1
Int disk_size = 10
Float memory = 3.5
Int preemptible = 1
Int maxRetries = 0
}
command <<<
set -euo pipefail
echo "~{sep("\n", select_all([sample_tsv_file, keep_samples_file, remove_samples_file, covar_tsv_file, pheno_tsv_file]))}" | \
tr '\n' '\0' | xargs -0 mv -t .
awk -F"\t" 'NR==1 {for (i=1; i<=NF; i++) f[$i] = i}
NR>1 {sex=substr($(f["computed_gender"]),1,1); if (toupper(sex)=="M" || sex==1) printf "%s\t1\n",$(f["sample_id"])}' \
"~{basename(sample_tsv_file)}" > "~{filebase}.male"
awk -F"\t" 'NR==1 {for (i=1; i<=NF; i++) f[$i] = i}
NR>1 {sex=substr($(f["computed_gender"]),1,1); if (toupper(sex)=="F" || sex==2) printf "%s\t2\n",$(f["sample_id"])}' \
"~{basename(sample_tsv_file)}" > "~{filebase}.female"
~{if defined(sex_specific) || defined(keep_samples_file) then "cut -f1 \"" + filebase + "." +
(if defined(sex_specific) then select_first([sex_specific]) else "male\" \"" + filebase + ".female") + "\"" +
(if defined(keep_samples_file) then " | \\\n awk -F\"\\t\" 'NR==FNR {x[$1]++} NR>FNR && $1 in x' \"" + basename(select_first([keep_samples_file])) + "\" -" else "") +
(if defined(remove_samples_file) then " | \\\n awk -F\"\\t\" 'NR==FNR {x[$1]++} NR>FNR && !($1 in x)' \"" + basename(select_first([remove_samples_file])) + "\" -" else "") +
" > \"" + filebase + ".keep.lines\"\n"
else ""}cat "~{filebase + "." + if defined(sex_specific) then select_first([sex_specific]) else "male\" \"" + filebase + ".female"}" | \
~{if defined(remove_samples_file) then
"awk -F\"\\t\" 'NR==FNR {x[$1]++} NR>FNR && !($1 in x)' \"" + basename(select_first([remove_samples_file])) + "\" - | \\\n "
else "" + if defined(covar_tsv_file) then
"awk -F\"\\t\" 'NR==FNR {x[$1]++} NR>FNR && $1 in x' \"" + basename(select_first([covar_tsv_file])) + "\" - | \\\n "
else ""}awk -F"\t" 'NR==FNR {x[$1]++} NR>FNR && (FNR==1 || $1 in x)' - "~{basename(pheno_tsv_file)}" > "~{filebase}.tmp"
cat "~{filebase}.male" "~{filebase}.female" | \
awk -F"\t" 'NR==FNR {sex[$1]=$2} NR>FNR && FNR==1 {for (i=2; i<=NF; i++) pheno[i] = $i}
NR>FNR && FNR>1 {for (i=2; i<=NF; i++) {if ($i==0) ctrls[i]++; if ($i==1) cases[i]++
if (sex[$1]==1 && $i!="NA") males[i]++; if (sex[$1]==2 && $i!="NA") females[i]++}}
END {for (i in pheno) printf "%s\t%d\t%d\t%d\t%d\n",pheno[i],ctrls[i],cases[i],males[i],females[i]}' \
- "~{filebase}.tmp" > "~{filebase}.cnt"
awk -F"\t" 'NR==FNR ~{if binary then "&& $2>=" + min_case_count + " && $3>=" + min_case_count else ""} && $~{
if defined(sex_specific) && !(select_first([sex_specific]) != "male") then "4"
else if defined(sex_specific) && !(select_first([sex_specific]) != "female") then "5"
else "4>=" + min_sex_count + " && $5"}>=~{min_sex_count} {keep[$1]++}
NR>FNR {if (FNR==1) {for (i=2; i<=NF; i++) if ($i in keep) col[j++]=i; printf "FID\tIID"}
else {gsub(" ","~{space_character}",$1); printf "0\t%s",$1} for (i=0; i<j; i++) printf "\t%s",$col[i]; printf "\n"}' \
"~{filebase}.cnt" "~{filebase}.tmp" > "~{filebase}.phe"
~{if defined(covar_tsv_file) then "cat \"" + filebase + "." +
(if defined(sex_specific) then select_first([sex_specific]) else "male\" \"" + filebase + ".female") + "\" | \\\n" +
" awk -F\"\\t\" 'NR==FNR {sex[$1]=$2} NR>FNR && (FNR==1 || $1 in sex) {if (FNR==1) printf \"FID\\tIID" + (if defined(sex_specific) then "" else "\\tsex") + "\"\n" +
" else {sex_cov=sex[$1]; gsub(\" \",\"" + space_character + "\",$1); printf \"0\\t%s" + (if defined(sex_specific) then "" else "\\t%s") + "\",$1" + (if defined(sex_specific) then "" else ",sex_cov") + "}\n" +
" for (i=2; i<=NF; i++) printf \"\\t%s\",$i; printf \"\\n\"}' \\\n" +
" - \"" + basename(select_first([covar_tsv_file])) + "\" > \"" + filebase + ".cov\"\n"
else if !defined(sex_specific) then
"cat \"" + filebase + ".male\" \"" + filebase + ".female\" | \\\n" +
" awk -F\"\\t\" '{if (NR==1) print \"FID\\tIID\\tsex\"; else printf \"0\\t%s\\t%s\\n\",$1,$2}' > \"" + filebase + ".cov\"\n"
else ""}head -n1 "~{filebase}.phe" | cut -f3- | tr '\t' '\n'
~{if defined(covar_tsv_file) || !defined(sex_specific) then
"head -n1 \"" + filebase + ".cov\" | cut -f3- | tr '\\t' '\\n' > \"" + filebase + ".cov.lines\"\n"
else ""}rm "~{filebase}.male" "~{filebase}.female" "~{filebase}.tmp" "~{filebase}.cnt"
echo "~{sep("\n", select_all([sample_tsv_file, keep_samples_file, remove_samples_file, covar_tsv_file, pheno_tsv_file]))}" | \
sed 's/^.*\///' | tr '\n' '\0' | xargs -0 rm
>>>
output {
Array[String] pheno_names = read_lines(stdout())
Array[String]? covar_names = if defined(covar_tsv_file) || !defined(sex_specific) then read_lines(filebase + ".cov.lines") else None
File? keep = if defined(sex_specific) || defined(keep_samples_file) then filebase + ".keep.lines" else None
File pheno = filebase + ".phe"
File? covar = if defined(covar_tsv_file) || !defined(sex_specific) then filebase + ".cov" else None
}
runtime {
docker: docker
cpu: cpu
disks: "local-disk " + disk_size + " HDD"
memory: memory + " GiB"
preemptible: preemptible
maxRetries: maxRetries
}
}
task ref_scatter {
input {
Array[String]+ chrs
Array[String]+ lens
File genetic_map_file
Float max_win_size_cm
Float overlap_size_cm
Boolean genetic_map_order
String docker
Int cpu = 1
Int disk_size = 10
Float memory = 3.5
Int preemptible = 1
Int maxRetries = 0
}
command <<<
set -euo pipefail
mv "~{genetic_map_file}" .
chrs=~{write_lines(chrs)}
lens=~{write_lines(lens)}
paste -d $'\t' $chrs $lens > chr2len.tsv
python3 <<CODE
import sys, pandas as pd, numpy as np
chr2len = {}
with open('chr2len.tsv') as f:
for line in f:
(key, val) = line.split('\t')
chr2len[key] = int(val)
df_map = pd.read_csv('~{basename(genetic_map_file)}', delim_whitespace = True, header = 0, names = ['CHR', 'POS' ,'RATE', 'CM'])
df_out = {}
for chr, df_group in df_map.groupby('CHR'):
fai_chr = str(chr) if str(chr) in chr2len else 'chr' + str(chr) if 'chr' + str(chr) in chr2len else 'X' if 'X' in chr2len else 'chrX' if 'chrX' in chr2len else None
if fai_chr:
chr_cm_len = max(df_group['CM'])
n_win = np.ceil((chr_cm_len - ~{overlap_size_cm})/(~{max_win_size_cm} - ~{overlap_size_cm}))
win_size = (chr_cm_len - ~{overlap_size_cm}) / n_win + ~{overlap_size_cm}
cm_begs = (win_size - ~{overlap_size_cm}) * np.arange(1, n_win)
cm_ends = (win_size - ~{overlap_size_cm}) * np.arange(1, n_win) + ~{overlap_size_cm}
pos_begs = np.concatenate(([0], 0 + np.interp(cm_begs, df_group['CM'], df_group['POS'], period = np.inf).astype(int)))
pos_ends = np.concatenate((np.interp(cm_ends, df_group['CM'], df_group['POS'], period = np.inf).astype(int), [chr2len[fai_chr]]))
df_out[fai_chr] = pd.DataFrame.from_dict({'CHR': fai_chr, 'BEG': pos_begs, 'END': pos_ends})
df = pd.concat(~{if genetic_map_order then "df_out" else "[df_out[fai_chr] for fai_chr in chr2len.keys()]"})
df[['CHR', 'BEG', 'END']].to_csv('ref_scatter.bed', sep='\t', header = False, index = False)
CODE
rm chr2len.tsv
rm "~{basename(genetic_map_file)}"
>>>
output {
File intervals_bed = "ref_scatter.bed"
}
runtime {
docker: docker
cpu: cpu
disks: "local-disk " + disk_size + " HDD"
memory: memory + " GiB"
preemptible: preemptible
maxRetries: maxRetries
}
}
# the command requires BCFtools 1.15 due to bug http://github.com/samtools/bcftools/issues/1631
task vcf_scatter {
input {
File vcf_file
File intervals_bed # zero-based intervals
File? keep_samples_file
File? remove_samples_file
Int clevel = 2
String? chr
String? dosage_field
String docker
Int? cpu_override
Int? disk_size_override
Float? memory_override
Int preemptible = 1
Int maxRetries = 0
}
Float vcf_size = size(vcf_file, "GiB")
Int disk_size = select_first([disk_size_override, ceil(10.0 + 3.0 * vcf_size)])
Float memory = select_first([memory_override, 3.5])
Int cpu = select_first([cpu_override, if memory > 6.5 then 2 * ceil(memory / 13) else 1])
String filebase = basename(basename(vcf_file, ".bcf"), ".vcf.gz")
command <<<
set -euo pipefail
echo "~{sep("\n", select_all([vcf_file, intervals_bed, keep_samples_file, remove_samples_file]))}" | \
tr '\n' '\0' | xargs -0 mv -t .
~{if defined(chr) then
"mv \"" + basename(intervals_bed) + "\" \"" + basename(intervals_bed, ".bed") + ".all.bed\"\n" +
"awk -v chr=\"" + chr + "\" '$1==chr' \"" + basename(intervals_bed, ".bed") + ".all.bed\" > \"" + basename(intervals_bed) + "\"\n" +
"rm \"" + basename(intervals_bed, ".bed") + ".all.bed\""
else ""}
bcftools query --force-samples --list-samples ~{if defined(keep_samples_file) then
"--samples-file \"" + basename(select_first([keep_samples_file])) + "\" "
else if defined (remove_samples_file) then
"--samples-file \"^" + basename(select_first([remove_samples_file])) + "\" "
else ""}"~{basename(vcf_file)}" > "~{filebase}.ids.lines"
cat "~{filebase}.ids.lines" | wc -l > n_smpls.int
awk -F"\t" '{print $1":"1+$2"-"$3"\t"NR-1}' "~{basename(intervals_bed)}" > regions.lines
~{if defined(keep_samples_file) then
"bcftools view --no-version -Ou --samples-file \"" + basename(select_first([keep_samples_file])) + "\" --force-samples \"" + basename(vcf_file) + "\" |\n "
else if defined (remove_samples_file) then
"bcftools view --no-version -Ou --samples-file \"^" + basename(select_first([remove_samples_file])) + "\" --force-samples \"" + basename(vcf_file) + "\" |\n "
else ""}bcftools annotate \
--no-version \
--output-type u \
--remove ID,QUAL,FILTER,INFO,^FMT/GT~{if defined(dosage_field) then ",^FMT/DS" else ""} \
~{if cpu > 1 then "--threads " + (cpu - 1) else ""} \
~{if defined(keep_samples_file) || defined(remove_samples_file) then "" else "\"" + basename(vcf_file) + "\" "} | \
bcftools norm \
--no-version \
--output-type u \
--rm-dup exact \
~{if cpu > 1 then "--threads " + (cpu - 1) else ""} | \
bcftools +scatter \
--no-version \
--output-type b~{clevel} \
--output vcfs \
~{if cpu > 1 then "--threads " + (cpu - 1) else ""} \
--scatter-file regions.lines \
--prefix "~{filebase}."
cut -f2 regions.lines | sed 's/^/vcfs\/~{filebase}./;s/$/.bcf/'
echo "~{sep("\n", select_all([vcf_file, intervals_bed, keep_samples_file, remove_samples_file]))}" | \
sed 's/^.*\///' | tr '\n' '\0' | xargs -0 rm
rm regions.lines
>>>
output {
Int n_smpls = read_int("n_smpls.int")
File ids_lines = filebase + ".ids.lines"
Directory vcfs = "vcfs"
Array[File] vcf_files = read_lines(stdout())
}
runtime {
docker: docker
cpu: cpu
disks: "local-disk " + disk_size + " HDD"
memory: memory + " GiB"
preemptible: preemptible
maxRetries: maxRetries
}
}
task vcf_merge {
input {
Array[File]+ vcf_files
Int? min_mac
Int clevel = 2
String filebase
String docker
Int? cpu_override
Int? disk_size_override
Float? memory_override
Int preemptible = 1
Int maxRetries = 0
}
Float vcf_size = size(vcf_files, "GiB")
Int disk_size = select_first([disk_size_override, ceil(10 + 2.0 * vcf_size)])
Float memory = select_first([memory_override, 3.5])
Int cpu = select_first([cpu_override, if memory > 6.5 then 2 * ceil(memory / 13) else 1])
command <<<
set -euo pipefail
~{if length(vcf_files) > 1 then "vcf_files=" else ""}~{if length(vcf_files) > 1 then write_lines(vcf_files) else ""}
~{if length(vcf_files) > 1 then "cat $vcf_files | tr '\\n' '\\0' | xargs -0 mv -t .\n" +
"sed -i 's/^.*\\///' $vcf_files\n" +
"bcftools merge \\\n" +
" --no-version \\\n" +
" --output-type " + (if defined(min_mac) then "u" else "b" + clevel + " \\\n" +
" --output \"" + filebase + ".bcf\"") + " \\\n" +
" --file-list $vcf_files \\\n" +
" --merge none \\\n" +
" --no-index \\\n" +
(if cpu > 1 then " --threads " + (cpu - 1) else "") +
(if defined(min_mac) then " | \\\n" +
"bcftools view \\\n" +
" --no-version \\\n" +
" --output-type b" + clevel + " \\\n" +
" --output \"" + filebase + ".bcf\" \\\n" +
" --min-ac " + min_mac + ":nonmajor" else "")
else if defined(min_mac) then
"bcftools view \\\n" +
" --no-version \\\n" +
" --output-type b" + clevel + " \\\n" +
" --output \"" + filebase + ".bcf\" \\\n" +
" --min-ac " + min_mac + ":nonmajor \\\n" +
" \"" + vcf_files[0] + "\""
else "mv \"" + vcf_files[0] + "\" \"" + filebase + ".bcf\""}
bcftools query --list-samples "~{filebase}.bcf" | wc -l
~{if length(vcf_files) > 1 then "cat $vcf_files | tr '\\n' '\\0' | xargs -0 rm" else ""}
>>>
output {
File vcf_file = filebase + ".bcf"
Int n_smpls = read_int(stdout())
}
runtime {
memory: memory + " GiB"
disks: "local-disk " + disk_size + " HDD"
cpu: cpu
docker: docker
preemptible: preemptible
maxRetries: maxRetries
}
}
# this command needs PLINK 1.9 as conversion from VCF using PLINK 2.0 is inefficient: http://groups.google.com/g/plink2-users/c/hsByNOklyA0
# the U sex needs to be encoded as 0 as this is the only accepted value for PLINK 1.9: http://groups.google.com/g/plink2-users/c/z7YJYa677NQ
# use of !(a!=b) due to bug Cromwell team will not fix: http://github.com/broadinstitute/cromwell/issues/5602
# the command requires BCFtools 1.14 due to bug http://github.com/samtools/bcftools/issues/1528
task pgt_prune {
input {
File vcf_file
File sample_tsv_file
String space_character
Int min_mac
Float min_maf
Int? autosome_ct
String docker
Int cpu = 1
Int? disk_size_override
Float memory = 3.5
Int preemptible = 1
Int maxRetries = 0
}
String filebase = basename(basename(vcf_file, ".bcf"), ".vcf.gz")
Float vcf_size = size(vcf_file, "GiB")
Int disk_size = select_first([disk_size_override, ceil(10.0 + 3.0 * vcf_size)])
command <<<
set -euo pipefail
mv "~{vcf_file}" .
mv "~{sample_tsv_file}" .
awk 'NR==1 {for (i=1; i<=NF; i++) f[$i] = i}
NR>1 {id=$(f["sample_id"]); gsub(" ","~{space_character}",id);
print 0,id,toupper(substr($(f["computed_gender"]),1,1))}' "~{basename(sample_tsv_file)}" | \
sed 's/U$/0/;s/K$/1/' > "~{filebase}.sex"
rm "~{basename(sample_tsv_file)}"
bcftools +fill-tags --no-version -Ou --include 'sum(AC)>=~{min_mac} && AN-sum(AC)>=~{min_mac} && MAF>=~{min_maf}' "~{basename(vcf_file)}" -- --tags AC,AN,MAF | \
bcftools annotate --no-version -Ob0 --set-id "%VKX" --remove FILTER,INFO,^FMT/GT | \
plink1.9 \
--threads ~{cpu} \
--memory ~{round(1024 * memory - 512)} \
--bcf /dev/stdin \
--update-sex "~{filebase}.sex" \
--keep-allele-order \
--vcf-idspace-to ~{space_character} \
--const-fid \
--allow-extra-chr 0 \
~{if defined(autosome_ct) then "--chr-set " + autosome_ct else ""} \
--make-bed \
--out "~{filebase}" \
1>&2
rm "~{basename(vcf_file)}" "~{filebase}.sex" "~{filebase}.nosex"
plink1.9 \
--threads ~{cpu} \
--memory ~{round(1024 * memory - 512)} \
--bfile "~{filebase}" \
--keep-allele-order \
--indep 50 5 2 \
~{if defined(autosome_ct) then "--chr-set " + autosome_ct else ""} \
--out "~{filebase}" \
1>&2
rm "~{filebase}.prune.out"
cat "~{filebase}.prune.in" | wc -l
plink1.9 \
--memory ~{round(1024 * memory - 512)} \
--threads ~{cpu} \
--bfile "~{filebase}" \
--keep-allele-order \
--extract "~{filebase}.prune.in" \
~{if defined(autosome_ct) then "--chr-set " + autosome_ct else ""} \
--make-bed \
--out "~{filebase}.prune" \
1>&2
rm "~{filebase}.bed" "~{filebase}.bim" "~{filebase}.fam" "~{filebase}.prune.in"
>>>
output {
Int n_markers = read_int(stdout())
File bed_file = filebase + ".prune.bed"
File bim_file = filebase + ".prune.bim"
File fam_file = filebase + ".prune.fam"
}
runtime {
memory: memory + " GiB"
disks: "local-disk " + disk_size + " HDD"
cpu: cpu
docker: docker
preemptible: preemptible
maxRetries: maxRetries
}
}
task pgt_concat {
input {
Array[File]+ bed_files
Array[File]+ bim_files