-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_multiple.py
171 lines (143 loc) · 5.98 KB
/
train_multiple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import os.path
import random
import numpy as np
import lycon
from keras.models import Sequential
# from keras.callbacks import TensorBoard
from tensorflow.keras.callbacks import TensorBoard
from keras.layers import Conv2D, Activation, MaxPooling2D, Dropout, Flatten, Dense, concatenate
from keras.optimizers import SGD
from keras.callbacks import ModelCheckpoint
random.seed(0)
SUBSET = "UFPR05"
ROOT_DB = "/media/scott/1056239B56238098/Datasets/PKLot/PKLotSegmented"
ROOT = "/media/scott/cvmdata/Projects/Thesis"
ROOT_SUBSET = f"{ROOT_DB}/{SUBSET}"
TRAIN_AND_TEST_DIR = f"{ROOT}/training_files/{SUBSET}"
LOGS_FILE = f"./logs/Multiple_PUC"
CHECKPOINT_FILES = f"/media/scott/cvmdata/checkpoints/Thesis/Multiple_PUC"
PERCENTAGE_OF_TRAIN_IMAGES = 0.9
SAVED_MODEL = f"{ROOT}/saved_models/Multiple_PUC"
CFG_TXT = f"{TRAIN_AND_TEST_DIR}/cfg.txt"
EPOCHS = 100
BATCH_SIZE = 32
def image_names_to_string(root_folder):
images = []
for root, dirs, files in os.walk(root_folder):
for name in files:
if name.endswith(".jpg"):
if os.path.basename(root) == "Empty":
images.append(root+"/"+name+" 0")
else:
images.append(root + "/" + name+" 1")
return images
def create_txt(arr, filename):
if os.path.isfile(filename):
open(filename, 'w').close()
for rows in arr:
with open(filename, "a+") as f:
f.write(rows+"\n")
def split_data_for_train_and_test(arr, split_percentage=PERCENTAGE_OF_TRAIN_IMAGES):
random.shuffle(arr)
length = int(len(arr) * split_percentage)
train_data = arr[:length]
test_data = arr[length:]
return train_data, test_data
# Determine input shape
def get_average_dimensions_of_images(filename):
heights, widths = [], []
a = 0
with open(filename, 'r') as f:
for line in f:
img = lycon.load(line.split(" ")[0])
heights.append(img.shape[0])
widths.append(img.shape[1])
a += 1
print(a)
return int(sum(heights) / len(heights)), int(sum(widths) / len(widths))
def convert_string_to_np_array(filename, img_height, img_width):
train_data, labels = [], []
with open(filename, 'r') as f:
for line in f:
image = lycon.resize(lycon.load(line.split(" ")[0]), width=img_width, height=img_height,
interpolation=lycon.Interpolation.CUBIC)
train_data.append(image)
labels.append(line.split(" ")[1])
return np.array(train_data), np.array(labels)
# Create files for train/test
def create_files():
zet = image_names_to_string(ROOT_SUBSET)
print("Images converted to string")
if not os.path.exists(TRAIN_AND_TEST_DIR):
os.makedirs(TRAIN_AND_TEST_DIR)
create_txt(zet, f"{TRAIN_AND_TEST_DIR}/all.txt")
train, test = split_data_for_train_and_test(zet)
print("Data is split to train and test")
create_txt(train, f"{TRAIN_AND_TEST_DIR}/train.txt")
print("Train file is created")
create_txt(test, f"{TRAIN_AND_TEST_DIR}/test.txt")
print("Test file is created")
img_height, img_width = get_average_dimensions_of_images(f"{TRAIN_AND_TEST_DIR}/all.txt")
with open(CFG_TXT, 'w+') as file:
data = [f"input_shape={img_height}x{img_width}\n"]
file.writelines(data)
def get_dimension():
with open(CFG_TXT, 'r') as file:
data = file.readlines()
data = data[0].split("=")[1].split("x")
return int(data[0]), int(data[1])
print("Getting dimension")
height, width = get_dimension()
print("Reading train.txt")
train_x, train_y = convert_string_to_np_array(f"{TRAIN_AND_TEST_DIR}/train.txt", height, width)
print("Reading test.txt")
test_x, test_y = convert_string_to_np_array(f"{TRAIN_AND_TEST_DIR}/test.txt", height, width)
print("Preprocessing data")
train_x = train_x / 255.0
test_x = test_x / 255.0
print("train_x shape: ", train_x.shape)
print("train_y shape: ", train_y.shape)
print("test_x shape: ", test_x.shape)
print("test_y shape: ", test_y.shape)
model = Sequential()
model.add(Conv2D(96, (11, 11,), padding='valid', strides=(1, 1), dilation_rate=(2, 2),
input_shape=(height, width, 3), name='conv1'))
model.add(Activation('relu', name='relu1'))
model.add(MaxPooling2D((2, 2), strides=(3, 3), padding='same', name='pool1'))
model.add(Conv2D(192, (3, 3), padding='same', name='conv2', strides=(1, 1)))
model.add(Activation('relu', name='relu2'))
model.add(MaxPooling2D((2, 2), padding='same', name='pool2'))
model.add(Flatten())
model.add(Dropout(0.5, name='dropout6'))
model.add(Dense(4096, activation='relu', name='fc6'))
model.add(Dropout(0.5, name='dropout7'))
model.add(Dense(4096, activation='relu', name='fc7'))
model.add(Dropout(0.5, name='dropout8'))
model.add(Dense(1, activation='sigmoid', name='predictions'))
model.summary()
learning_rate = 0.0001
weight_decay = 0.0005
nesterov = True
momentum = 0.99
sgd = SGD(lr=learning_rate, decay=weight_decay, momentum=momentum, nesterov=nesterov)
model.compile(optimizer=sgd, loss='binary_crossentropy', metrics=['accuracy'])
if not os.path.exists(CHECKPOINT_FILES):
os.makedirs(CHECKPOINT_FILES)
checkpoint = ModelCheckpoint(CHECKPOINT_FILES+"/checkpoint-{epoch:02d}-{val_loss:.2f}.hdf5",
verbose=1, monitor='val_loss', save_best_only=False)
if not os.path.exists(LOGS_FILE):
os.makedirs(LOGS_FILE)
tensorboard = TensorBoard(log_dir=LOGS_FILE, histogram_freq=0, write_graph=True, write_images=False)
model.fit(train_x, train_y, epochs=EPOCHS, batch_size=BATCH_SIZE, verbose=1, callbacks=[checkpoint, tensorboard],
validation_split=0.2)
scores = model.evaluate(train_x, train_y, verbose=0)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
model_json = model.to_json()
if not os.path.exists(SAVED_MODEL):
os.makedirs(SAVED_MODEL)
with open(f"{SAVED_MODEL}/{SUBSET}_model.json", "w") as json_file:
json_file.write(model_json)
# serialize weights to HDF5
model.save_weights(f"{SAVED_MODEL}/{SUBSET}_model.h5")
print("Saved model to disk")