-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzbt_top.vhd
546 lines (477 loc) · 23.9 KB
/
zbt_top.vhd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
----------------------------------------------------------------------------------
-- Company: VISENGI S.L. (www.visengi.com) - URJC FRAV Group (www.frav.es)
-- Engineer: Victor Lopez Lorenzo (victor.lopez (at) visengi (dot) com)
--
-- Create Date: 12:39:50 06-Oct-2008
-- Project Name: ZBT SRAM WISHBONE Controller
-- Target Devices: Xilinx ML506 board
-- Tool versions: Xilinx ISE 9.2i
-- Description: This is a ZBT SRAM controller which is Wishbone rev B.3 compatible (classic + burst r/w operations).
--
-- Dependencies: It may be run on any board/FPGA with a ZBT SRAM pin compatible (or at least in the control signals)
-- with the one on the ML506 board (ISSI IS61NLP 256kx36 ZBT SRAM)
--
--
-- LICENSE TERMS: (CCPL) Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported.
-- http://creativecommons.org/licenses/by-nc-sa/3.0/
--
-- That is you may use it only in NON-COMMERCIAL projects.
-- You are required to include in the copyrights/about section
-- that your system contains a "ZBT SRAM Controller (C) Victor Lopez Lorenzo under CCPL license"
-- This holds also in the case where you modify the core, as the resulting core
-- would be a derived work.
-- Also, we would like to know if you use this core in a project of yours, just an email will do.
--
-- Please take good note of the disclaimer section of the CCPL license, as we don't
-- take any responsability for anything that this core does.
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- WB: MASTER MUST NOT insert wait states!
-- WB: maximum burst length is 4 (but bursts may follow without wait states in between)
entity zbt_top is
Port ( clk : in STD_LOGIC;
reset : in STD_LOGIC;
SRAM_CLK : out STD_LOGIC; --Synchronous Clock (up to 200 MHz)
--A burst mode pin (MODE) defines the order of the burst sequence. When tied HIGH, the interleaved burst sequence is selected.
--When tied LOW, the linear burst sequence is selected.
SRAM_MODE : out STD_LOGIC; --Burst Sequence Selection (pulled down on PCB)
SRAM_CS_B : out STD_LOGIC; --Synchronous Chip Enable (CE\, pulled up on PCB)
--For write cycles following read cycles, the output buffers must be disabled with OE\, otherwise data bus contention will occur
SRAM_OE_B : out STD_LOGIC; --Output Enable (OE\, pulled up on PCB)
--Write cycles are internally self-timed and are initiated by the rising edge of the clock inputs and when WE\ is LOW.
SRAM_FLASH_WE_B : out STD_LOGIC; --Synchronous Read/Write Control Input (pulled up on PCB)
--All Read, Write and Deselect cycles are initiated by the ADV input. When the ADV input is HIGH the internal
--burst counter is incremented. New external addresses can be loaded when ADV is LOW.
SRAM_ADV_LD_B : out STD_LOGIC; --Synchronous Burst Address Advance/Load (pulled down on PCB)
SRAM_BW0 : out STD_LOGIC; --Synchronous Byte Write Enable 0 (active low)
SRAM_BW1 : out STD_LOGIC; --Synchronous Byte Write Enable 1 (active low)
SRAM_BW2 : out STD_LOGIC; --Synchronous Byte Write Enable 2 (active low)
SRAM_BW3 : out STD_LOGIC; --Synchronous Byte Write Enable 3 (active low)
--SRAM_FLASH_A0 : out STD_LOGIC; --not connected to SRAM!
SRAM_FLASH_A1 : out STD_LOGIC; --Synchronous Address Input 0
SRAM_FLASH_A2 : out STD_LOGIC; --Synchronous Address Input 1
SRAM_FLASH_A3 : out STD_LOGIC;
SRAM_FLASH_A4 : out STD_LOGIC;
SRAM_FLASH_A5 : out STD_LOGIC;
SRAM_FLASH_A6 : out STD_LOGIC;
SRAM_FLASH_A7 : out STD_LOGIC;
SRAM_FLASH_A8 : out STD_LOGIC;
SRAM_FLASH_A9 : out STD_LOGIC;
SRAM_FLASH_A10 : out STD_LOGIC;
SRAM_FLASH_A11 : out STD_LOGIC;
SRAM_FLASH_A12 : out STD_LOGIC;
SRAM_FLASH_A13 : out STD_LOGIC;
SRAM_FLASH_A14 : out STD_LOGIC;
SRAM_FLASH_A15 : out STD_LOGIC;
SRAM_FLASH_A16 : out STD_LOGIC;
SRAM_FLASH_A17 : out STD_LOGIC;
SRAM_FLASH_A18 : out STD_LOGIC;
SRAM_FLASH_D0 : inout STD_LOGIC;
SRAM_FLASH_D1 : inout STD_LOGIC;
SRAM_FLASH_D2 : inout STD_LOGIC;
SRAM_FLASH_D3 : inout STD_LOGIC;
SRAM_FLASH_D4 : inout STD_LOGIC;
SRAM_FLASH_D5 : inout STD_LOGIC;
SRAM_FLASH_D6 : inout STD_LOGIC;
SRAM_FLASH_D7 : inout STD_LOGIC;
SRAM_FLASH_D8 : inout STD_LOGIC;
SRAM_FLASH_D9 : inout STD_LOGIC;
SRAM_FLASH_D10 : inout STD_LOGIC;
SRAM_FLASH_D11 : inout STD_LOGIC;
SRAM_FLASH_D12 : inout STD_LOGIC;
SRAM_FLASH_D13 : inout STD_LOGIC;
SRAM_FLASH_D14 : inout STD_LOGIC;
SRAM_FLASH_D15 : inout STD_LOGIC;
SRAM_D16 : inout STD_LOGIC;
SRAM_D17 : inout STD_LOGIC;
SRAM_D18 : inout STD_LOGIC;
SRAM_D19 : inout STD_LOGIC;
SRAM_D20 : inout STD_LOGIC;
SRAM_D21 : inout STD_LOGIC;
SRAM_D22 : inout STD_LOGIC;
SRAM_D23 : inout STD_LOGIC;
SRAM_D24 : inout STD_LOGIC;
SRAM_D25 : inout STD_LOGIC;
SRAM_D26 : inout STD_LOGIC;
SRAM_D27 : inout STD_LOGIC;
SRAM_D28 : inout STD_LOGIC;
SRAM_D29 : inout STD_LOGIC;
SRAM_D30 : inout STD_LOGIC;
SRAM_D31 : inout STD_LOGIC;
SRAM_DQP0 : inout STD_LOGIC; --Parity Data I/O 0
SRAM_DQP1 : inout STD_LOGIC; --Parity Data I/O 1
SRAM_DQP2 : inout STD_LOGIC; --Parity Data I/O 2
SRAM_DQP3 : inout STD_LOGIC; --Parity Data I/O 3
wb_adr_i : in std_logic_vector(17 downto 0);
wb_we_i : in std_logic;
wb_dat_i : in std_logic_vector(35 downto 0);
wb_sel_i : in std_logic_vector(3 downto 0);
wb_dat_o : out std_logic_vector(35 downto 0);
wb_cyc_i : in std_logic;
wb_stb_i : in std_logic;
wb_cti_i : in std_logic_vector(2 downto 0);
wb_bte_i : in std_logic_vector(1 downto 0);
wb_ack_o : out std_logic;
wb_err_o : out std_logic;
wb_tga_i: in std_logic := '0' --'0' to mean last (or single) 4 words burst
);
end zbt_top;
architecture Behavioral of zbt_top is
signal ZBT_addr, ZBT_addr2 : std_logic_vector(17 downto 0);
signal ZBT_din, ZBT_din2, ZBT_din1 : std_logic_vector(35 downto 0);
signal ZBT_dout : std_logic_vector(35 downto 0);
signal BW_enable, SRAM_OE_B2 : std_logic;
signal State : integer;
constant IDLE : integer := 0;
constant C1 : integer := 1;
constant C2 : integer := 2;
constant C3 : integer := 3;
constant C4 : integer := 4;
constant B1 : integer := 5;
constant B2 : integer := 6;
constant B3 : integer := 7;
constant B4 : integer := 8;
constant B5 : integer := 9;
constant B6 : integer := 10;
constant B4L : integer := 11;
constant B5L : integer := 12;
constant B6L : integer := 13;
constant B0W : integer := 14;
constant B1W : integer := 15;
constant B2W : integer := 16;
constant B3W : integer := 17;
constant B4WL : integer := 18;
constant B5WL : integer := 19;
begin
FSM_State_Control : process (clk, reset)
begin
if (reset = '1') then
State <= IDLE;
elsif (clk = '1' and clk'event) then
case State is
when IDLE =>
if (wb_cyc_i = '1' and wb_stb_i = '1') then --start of WB cycle?
if (wb_bte_i /= "00" or wb_cti_i /= "010") then --classic cycle
--(WB rule 4.25, only linear bursts accepted, WB permission 4.40: EOB=single access~=sync.classic cycle, WB rule 4.10: unknown=classic cycles)
--we were in idle state, so any classic cycle, EOB cycle or any cycle with a non linear burst is executed as a classic one
State <= C1;
else --Incrementing burst cycle with linear burst type
assert (wb_bte_i = "00" and wb_cti_i="010") report "Bad else on IDLE state (cti=" & integer'image(conv_integer(wb_cti_i)) & ", bte=" & integer'image(conv_integer(wb_bte_i)) & ")" severity FAILURE;
if (wb_we_i = '0') then --wb burst read?
State <= B1;
else --wb burst write?
State <= B0W;
end if;
end if;
else
State <= IDLE;
end if;
--start single word read/write
when C1 =>
if (wb_cyc_i = '1' and wb_stb_i = '1') then State <= C2; else State <= IDLE; end if;
when C2 => --wb_ack <= '1' in this cycle
if (wb_cyc_i = '1' and wb_stb_i = '1') then State <= C3; else State <= IDLE; end if;
when C3 => --wb_ack = '1' in this cycle
State <= C4;
when C4 =>
State <= IDLE;
--Burst read
when B1 =>
if (wb_cyc_i = '1' and wb_stb_i = '1' and wb_cti_i /= "111") then State <= B2; else State <= IDLE; end if;
when B2 =>
if (wb_cyc_i = '1' and wb_stb_i = '1' and wb_cti_i /= "111") then State <= B3; else State <= IDLE; end if;
when B3 =>
if (wb_cyc_i = '1' and wb_stb_i = '1' and wb_cti_i /= "111") then
if (wb_tga_i = '0') then --last burst?
State <= B4L;
else
State <= B4;
end if;
else
State <= IDLE;
end if;
when B4 =>
if (wb_cyc_i = '1' and wb_stb_i = '1' and wb_cti_i /= "111") then State <= B5; else State <= IDLE; end if;
when B5 =>
if (wb_cyc_i = '1' and wb_stb_i = '1' and wb_cti_i /= "111") then State <= B6; else State <= IDLE; end if;
when B6 => --go back to B3
if (wb_cyc_i = '1' and wb_stb_i = '1' and wb_cti_i /= "111") then State <= B3; else State <= IDLE; end if;
--last burst read
when B4L =>
if (wb_cyc_i = '1' and wb_stb_i = '1' and wb_cti_i /= "111") then State <= B5L; else State <= IDLE; end if;
when B5L =>
if (wb_cyc_i = '1' and wb_stb_i = '1' and wb_cti_i /= "111") then State <= B6L; else State <= IDLE; end if;
when B6L => --in this cycle wb_cti_i must be 111 because the ZBT has a burst length of 4
State <= IDLE;
--Burst write
when B0W =>
if (wb_cyc_i = '1' and wb_stb_i = '1' and wb_cti_i /= "111") then State <= B1W; else State <= IDLE; end if;
when B1W =>
if (wb_cyc_i = '1' and wb_stb_i = '1' and wb_cti_i /= "111") then State <= B2W; else State <= IDLE; end if;
when B2W =>
if (wb_cyc_i = '1' and wb_stb_i = '1' and wb_cti_i /= "111") then State <= B3W; else State <= IDLE; end if;
when B3W =>
if (wb_cyc_i = '1' and wb_stb_i = '1') then --wb_cti should be "111" if it is the last burst
if (wb_tga_i = '0') then --last burst?
State <= B4WL;
else
State <= B0W;
end if;
else
State <= IDLE;
end if;
--last burst write
when B4WL => --don't check cti as it was 111 in B3W for the last burst!
State <= B5WL;
when B5WL =>
State <= IDLE;
when others =>
report "Bad state on FSM_State_Control " & integer'image(State) severity FAILURE;
end case;
end if;
end process FSM_State_Control;
Wishbone_Slave_Control : process (clk, reset)
begin
if (reset = '1') then
wb_ack_o <= '0';
wb_err_o <= '0';
elsif (clk = '1' and clk'event) then
wb_err_o <= '0';
case State is
when IDLE =>
if (wb_cyc_i='1' and wb_stb_i='1' and wb_we_i='1' and wb_bte_i="00" and wb_cti_i="010") then --burst write cycle?
wb_ack_o <= '1'; --preack the master to have it give us the next wb_sel_i and wb_dat_i signals
else
wb_ack_o <= '0';
end if;
when C1 | C3 | C4 | B1 | B6L | B4WL | B5WL => --in the case of bursts cyc MUST be lowered after cti="111"
wb_ack_o <= '0'; --in the case of classic cycles, we have C3 and C4 where ack is lowered, to make the master lower cyc
when C2 | B2 | B3 | B4 | B5 | B6 | B4L | B5L | B0W | B1W | B2W =>
wb_ack_o <= wb_cyc_i and wb_stb_i; --ack should be 1, but it will only go up if cyc and stb are so
when B3W => --last write burst?
wb_ack_o <= wb_tga_i and wb_cyc_i and wb_stb_i; --ack should be 1, but it will only go up if cyc and stb are so (and if it is not the last burst)
when others =>
report "Bad state on WB_Slave_Control " & integer'image(State) severity FAILURE;
end case;
end if;
end process Wishbone_Slave_Control;
wb_dat_o <= ZBT_dout;
ZBT_SRAM_Control : process (clk, reset)
variable vBW_enable : std_logic;
begin
if (reset = '1') then
SRAM_ADV_LD_B <= '0';
SRAM_CS_B <= '1'; --chip NOT selected
SRAM_FLASH_WE_B <= '1'; --DON'T write anything
--by default output is not enabled to avoid bus contemption with the wb master
SRAM_OE_B2 <= '1'; --output NOT enabled
ZBT_addr <= (others => '0');
ZBT_addr2 <= (others => '0');
ZBT_din2 <= (others => '0');
ZBT_din1 <= (others => '0');
ZBT_din <= (others => '0');
BW_enable <= '0';
vBW_enable := '0';
SRAM_BW0 <= '1';
SRAM_BW1 <= '1';
SRAM_BW2 <= '1';
SRAM_BW3 <= '1';
elsif (clk = '1' and clk'event) then
--two stage datain pipeline
ZBT_din2 <= wb_dat_i;
ZBT_din1 <= ZBT_din2;
ZBT_din <= ZBT_din1;
--REASON WHY THERE IS A DATAIN PIPELINE:
--Based on the ZBT SRAM datasheet:
--it doesn't make much sense but the "byte write enables" are not fed to the ZBT
--at the same time than the data to be written, so the wb_sel_i lines arrive late
--(because they arrive, obviously, at the same time than their associated wb_dat_i lines)
--which is 2 cycles later than when they should be fed to the ZBT
--the only solution is, on wb writes:
-- 1) start wb_acking soon (to have the master give us soon enough the right wb_sel lines for each data word to write)
-- 2) make two registers to have a two stage pipeline for the data words in order to feed them to the ZBT at the 3rd cycle
-- this means 72 extra FFs for the registers and a more complex wb slave logic (differentiate if read or write)
-- there would be the same number of acks but the 2 cycles response latency would happen at the end of the last burst of the wb write
case State is
when IDLE => --prepare signals for next cycle
vBW_enable := '0';
SRAM_ADV_LD_B <= '0';
if (wb_cyc_i = '1' and wb_stb_i = '1') then
ZBT_addr <= wb_adr_i;
ZBT_addr2 <= wb_adr_i + x"4";
if (wb_bte_i /= "00" or wb_cti_i /= "010") then --classic cycle?
SRAM_CS_B <= '0'; --chip selected
SRAM_OE_B2 <= wb_we_i; --if it's a read -> enable outputs
SRAM_FLASH_WE_B <= not wb_we_i;
vBW_enable := wb_we_i;
else --burst
if (wb_we_i = '0') then --wb burst read?
SRAM_CS_B <= '0'; --chip selected
SRAM_OE_B2 <= wb_we_i; --if it's a read -> enable outputs
SRAM_FLASH_WE_B <= not wb_we_i;
else --wb burst write? start ZBT in B0W but get now ZBT_addr2!
ZBT_addr2 <= wb_adr_i; --important because ZBT_addr2 will be assigned in next cycle (so don't sum 4 to it)
SRAM_CS_B <= '1'; --chip NOT selected
SRAM_OE_B2 <= '1'; --output NOT enabled for next cycle
SRAM_FLASH_WE_B <= '1'; --DON'T write anything
end if;
end if;
else
SRAM_CS_B <= '1'; --chip NOT selected
SRAM_OE_B2 <= '1'; --output NOT enabled for next cycle
SRAM_FLASH_WE_B <= '1'; --DON'T write anything
ZBT_addr <= (others => '0');
ZBT_addr2 <= (others => '0');
end if;
when C1 | C2 =>
SRAM_CS_B <= '1'; --chip NOT selected (doesn't affect current op.: don't care in datasheet)
SRAM_ADV_LD_B <= '0'; --NOT a burst
--SRAM_OE_B2 keep the selected output enable for the current WB operation
vBW_enable := '0'; --it only matters for the ADV=0 cycle of the ZBT operation
when C3 | C4 =>
SRAM_CS_B <= '1'; --chip NOT selected (doesn't affect current op.: don't care in datasheet)
SRAM_ADV_LD_B <= '0'; --NOT a burst
SRAM_OE_B2 <= '1'; --output NOT enabled for next cycle
vBW_enable := '0';
when B1 | B2 | B3 | B5 | B6 =>
SRAM_ADV_LD_B <= '1';
when B4 => --precharge address for next 4 word burst
SRAM_ADV_LD_B <= '0';
ZBT_addr <= ZBT_addr2;
ZBT_addr2 <= ZBT_addr2 + x"4";
when B4L | B5L | B6L => --last burst
SRAM_ADV_LD_B <= '0';
SRAM_CS_B <= '1'; --chip NOT selected
when B0W => --a wb write starts here
SRAM_ADV_LD_B <= '0'; --first write cycle
SRAM_OE_B2 <= '1'; --keep output NOT enabled (it's a write)
SRAM_CS_B <= '0'; --chip selected
SRAM_FLASH_WE_B <= '0'; --start writing
ZBT_addr <= ZBT_addr2;
ZBT_addr2 <= ZBT_addr2 + x"4";
vBW_enable := '1';
when B1W | B2W | B3W =>
SRAM_ADV_LD_B <= '1';
vBW_enable := '1';
when B4WL | B5WL =>
SRAM_CS_B <= '1'; --chip NOT selected (don't care in datasheet)
SRAM_FLASH_WE_B <= '1'; --DON'T write (don't care in datasheet)
SRAM_ADV_LD_B <= '0';
vBW_enable := '0';
when others =>
report "Bad state on ZBT_SRAM_Control " & integer'image(State) severity FAILURE;
end case;
BW_enable <= vBW_enable;
--Byte write enables are active low
SRAM_BW0 <= not (wb_sel_i(0) and vBW_enable);
SRAM_BW1 <= not (wb_sel_i(1) and vBW_enable);
SRAM_BW2 <= not (wb_sel_i(2) and vBW_enable);
SRAM_BW3 <= not (wb_sel_i(3) and vBW_enable);
end if;
end process ZBT_SRAM_Control;
SRAM_CLK <= clk;
SRAM_MODE <= '0'; --linear bursts
SRAM_OE_B <= SRAM_OE_B2; --to let OE_B2 be read to mux the data lines
---------------------------------
-- DATA IN LINES
---------------------------------
SRAM_FLASH_D0 <= ZBT_din(0) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_FLASH_D1 <= ZBT_din(1) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_FLASH_D2 <= ZBT_din(2) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_FLASH_D3 <= ZBT_din(3) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_FLASH_D4 <= ZBT_din(4) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_FLASH_D5 <= ZBT_din(5) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_FLASH_D6 <= ZBT_din(6) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_FLASH_D7 <= ZBT_din(7) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_FLASH_D8 <= ZBT_din(8) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_FLASH_D9 <= ZBT_din(9) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_FLASH_D10 <= ZBT_din(10) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_FLASH_D11 <= ZBT_din(11) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_FLASH_D12 <= ZBT_din(12) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_FLASH_D13 <= ZBT_din(13) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_FLASH_D14 <= ZBT_din(14) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_FLASH_D15 <= ZBT_din(15) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_D16 <= ZBT_din(16) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_D17 <= ZBT_din(17) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_D18 <= ZBT_din(18) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_D19 <= ZBT_din(19) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_D20 <= ZBT_din(20) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_D21 <= ZBT_din(21) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_D22 <= ZBT_din(22) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_D23 <= ZBT_din(23) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_D24 <= ZBT_din(24) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_D25 <= ZBT_din(25) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_D26 <= ZBT_din(26) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_D27 <= ZBT_din(27) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_D28 <= ZBT_din(28) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_D29 <= ZBT_din(29) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_D30 <= ZBT_din(30) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_D31 <= ZBT_din(31) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_DQP0 <= ZBT_din(32) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_DQP1 <= ZBT_din(33) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_DQP2 <= ZBT_din(34) when (SRAM_OE_B2 = '1') else 'Z';
SRAM_DQP3 <= ZBT_din(35) when (SRAM_OE_B2 = '1') else 'Z';
---------------------------------
-- DATA OUT LINES
---------------------------------
ZBT_dout(0) <= SRAM_FLASH_D0;
ZBT_dout(1) <= SRAM_FLASH_D1;
ZBT_dout(2) <= SRAM_FLASH_D2;
ZBT_dout(3) <= SRAM_FLASH_D3;
ZBT_dout(4) <= SRAM_FLASH_D4;
ZBT_dout(5) <= SRAM_FLASH_D5;
ZBT_dout(6) <= SRAM_FLASH_D6;
ZBT_dout(7) <= SRAM_FLASH_D7;
ZBT_dout(8) <= SRAM_FLASH_D8;
ZBT_dout(9) <= SRAM_FLASH_D9;
ZBT_dout(10) <= SRAM_FLASH_D10;
ZBT_dout(11) <= SRAM_FLASH_D11;
ZBT_dout(12) <= SRAM_FLASH_D12;
ZBT_dout(13) <= SRAM_FLASH_D13;
ZBT_dout(14) <= SRAM_FLASH_D14;
ZBT_dout(15) <= SRAM_FLASH_D15;
ZBT_dout(16) <= SRAM_D16;
ZBT_dout(17) <= SRAM_D17;
ZBT_dout(18) <= SRAM_D18;
ZBT_dout(19) <= SRAM_D19;
ZBT_dout(20) <= SRAM_D20;
ZBT_dout(21) <= SRAM_D21;
ZBT_dout(22) <= SRAM_D22;
ZBT_dout(23) <= SRAM_D23;
ZBT_dout(24) <= SRAM_D24;
ZBT_dout(25) <= SRAM_D25;
ZBT_dout(26) <= SRAM_D26;
ZBT_dout(27) <= SRAM_D27;
ZBT_dout(28) <= SRAM_D28;
ZBT_dout(29) <= SRAM_D29;
ZBT_dout(30) <= SRAM_D30;
ZBT_dout(31) <= SRAM_D31;
ZBT_dout(32) <= SRAM_DQP0;
ZBT_dout(33) <= SRAM_DQP1;
ZBT_dout(34) <= SRAM_DQP2;
ZBT_dout(35) <= SRAM_DQP3;
---------------------------------
-- ADDRESS LINES
---------------------------------
SRAM_FLASH_A1 <= ZBT_addr(0);
SRAM_FLASH_A2 <= ZBT_addr(1);
SRAM_FLASH_A3 <= ZBT_addr(2);
SRAM_FLASH_A4 <= ZBT_addr(3);
SRAM_FLASH_A5 <= ZBT_addr(4);
SRAM_FLASH_A6 <= ZBT_addr(5);
SRAM_FLASH_A7 <= ZBT_addr(6);
SRAM_FLASH_A8 <= ZBT_addr(7);
SRAM_FLASH_A9 <= ZBT_addr(8);
SRAM_FLASH_A10 <= ZBT_addr(9);
SRAM_FLASH_A11 <= ZBT_addr(10);
SRAM_FLASH_A12 <= ZBT_addr(11);
SRAM_FLASH_A13 <= ZBT_addr(12);
SRAM_FLASH_A14 <= ZBT_addr(13);
SRAM_FLASH_A15 <= ZBT_addr(14);
SRAM_FLASH_A16 <= ZBT_addr(15);
SRAM_FLASH_A17 <= ZBT_addr(16);
SRAM_FLASH_A18 <= ZBT_addr(17);
end Behavioral;