-
Notifications
You must be signed in to change notification settings - Fork 3
/
conf
93 lines (82 loc) · 1.79 KB
/
conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
general {
base_exp_dir = ./exp/CASE_NAME
recording = [
./,
./models
]
}
dataset {
data_dir = ./data/DTU/CASE_NAME/
render_cameras_name = cameras_sphere.npz
object_cameras_name = cameras_sphere.npz
feat_map_h = 384
feat_map_w = 512
}
train {
learning_rate = 5e-4
learning_rate_alpha = 0.05
end_iter = 300000
batch_size = 512
validate_resolution_level = 4
warm_up_end = 5000
anneal_end = 50000
use_white_bkgd = False
save_freq = 10000
val_freq = 2500
val_mesh_freq = 5000
report_freq = 100
igr_weight = 0.1
mask_weight = 0.0
phase_delim = [0.16667, 0.5]
feat_weight = [0, 0.5, 0.05]
bias_weight = [0.01, 0.1, 0.01]
depth_from_inside_only = [False, True, True]
object_mask_type = "zero_sdf_mask"
}
model {
nerf {
D = 8,
d_in = 4,
d_in_view = 3,
W = 256,
multires = 10,
multires_view = 4,
output_ch = 4,
skips=[4],
use_viewdirs=True
}
sdf_network {
d_out = 257
d_in = 3
d_hidden = 256
n_layers = 8
skip_in = [4]
multires = 6
bias = 0.5
scale = 1.0
geometric_init = True
weight_norm = True
}
# == inv_s in the code == s in the paper == 1 / standard deviation
variance_network {
init_val = 0.3
}
rendering_network {
d_feature = 256
mode = idr
d_in = 9
d_out = 3
d_hidden = 256
n_layers = 4
weight_norm = True
multires_view = 4
squeeze_out = True
}
neus_renderer {
n_samples = 64
n_importance = 64
n_outside = 32
up_sample_steps = 4 # 1 for simple coarse-to-fine sampling
perturb = 1.0
}
}