-
Notifications
You must be signed in to change notification settings - Fork 19
/
draw_landmark.py
197 lines (174 loc) · 9.18 KB
/
draw_landmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
"""MediaPipe solution drawing utils."""
import math
from typing import List, Mapping, Optional, Tuple, Union
import cv2
import dataclasses
import numpy as np
import tqdm
from mediapipe.framework.formats import landmark_pb2
_PRESENCE_THRESHOLD = 0.5
_VISIBILITY_THRESHOLD = 0.5
_BGR_CHANNELS = 3
WHITE_COLOR = (224, 224, 224)
BLACK_COLOR = (0, 0, 0)
RED_COLOR = (0, 0, 255)
GREEN_COLOR = (0, 128, 0)
BLUE_COLOR = (255, 0, 0)
@dataclasses.dataclass
class DrawingSpec:
# Color for drawing the annotation. Default to the white color.
color: Tuple[int, int, int] = WHITE_COLOR
# Thickness for drawing the annotation. Default to 2 pixels.
thickness: int = 2
# Circle radius. Default to 2 pixels.
circle_radius: int = 2
def _normalized_to_pixel_coordinates(
normalized_x: float, normalized_y: float, image_width: int,
image_height: int) -> Union[None, Tuple[int, int]]:
"""Converts normalized value pair to pixel coordinates."""
# Checks if the float value is between 0 and 1.
def is_valid_normalized_value(value: float) -> bool:
return (value > 0 or math.isclose(0, value)) and (value < 1 or
math.isclose(1, value))
if not (is_valid_normalized_value(normalized_x) and
is_valid_normalized_value(normalized_y)):
# TODO: Draw coordinates even if it's outside of the image bounds.
return None
x_px = min(math.floor(normalized_x * image_width), image_width - 1)
y_px = min(math.floor(normalized_y * image_height), image_height - 1)
return x_px, y_px
FACEMESH_LIPS = frozenset([(61, 146), (146, 91), (91, 181), (181, 84), (84, 17),
(17, 314), (314, 405), (405, 321), (321, 375),
(375, 291), (61, 185), (185, 40), (40, 39), (39, 37),
(37, 0), (0, 267),
(267, 269), (269, 270), (270, 409), (409, 291),
(78, 95), (95, 88), (88, 178), (178, 87), (87, 14),
(14, 317), (317, 402), (402, 318), (318, 324),
(324, 308), (78, 191), (191, 80), (80, 81), (81, 82),
(82, 13), (13, 312), (312, 311), (311, 310),
(310, 415), (415, 308)])
FACEMESH_LEFT_EYE = frozenset([(263, 249), (249, 390), (390, 373), (373, 374),
(374, 380), (380, 381), (381, 382), (382, 362),
(263, 466), (466, 388), (388, 387), (387, 386),
(386, 385), (385, 384), (384, 398), (398, 362)])
FACEMESH_LEFT_IRIS = frozenset([(474, 475), (475, 476), (476, 477),
(477, 474)])
FACEMESH_LEFT_EYEBROW = frozenset([(276, 283), (283, 282), (282, 295),
(295, 285), (300, 293), (293, 334),
(334, 296), (296, 336)])
FACEMESH_RIGHT_EYE = frozenset([(33, 7), (7, 163), (163, 144), (144, 145),
(145, 153), (153, 154), (154, 155), (155, 133),
(33, 246), (246, 161), (161, 160), (160, 159),
(159, 158), (158, 157), (157, 173), (173, 133)])
FACEMESH_RIGHT_EYEBROW = frozenset([(46, 53), (53, 52), (52, 65), (65, 55),
(70, 63), (63, 105), (105, 66), (66, 107)])
FACEMESH_RIGHT_IRIS = frozenset([(469, 470), (470, 471), (471, 472),
(472, 469)])
FACEMESH_FACE_OVAL = frozenset([(389, 356), (356, 454),
(454, 323), (323, 361), (361, 288), (288, 397),
(397, 365), (365, 379), (379, 378), (378, 400),
(400, 377), (377, 152), (152, 148), (148, 176),
(176, 149), (149, 150), (150, 136), (136, 172),
(172, 58), (58, 132), (132, 93), (93, 234),
(234, 127), (127, 162)])
#(10, 338), (338, 297), (297, 332), (332, 284),(284, 251), (251, 389) (162, 21), (21, 54),(54, 103), (103, 67), (67, 109), (109, 10)
FACEMESH_NOSE= frozenset([(168, 6),(6,197),(197,195),(195,5),(5,4),\
(4,45),(45,220),(220,115),(115,48),\
(4,275),(275,440),(440,344),(344,278),])
FACEMESH_FULL = frozenset().union(*[
FACEMESH_LIPS, FACEMESH_LEFT_EYE, FACEMESH_LEFT_EYEBROW, FACEMESH_RIGHT_EYE,
FACEMESH_RIGHT_EYEBROW, FACEMESH_FACE_OVAL,FACEMESH_NOSE
])
connections=FACEMESH_FULL
def summary_landmark(edge_set):
landmarks=set()
for a,b in edge_set:
landmarks.add(a)
landmarks.add(b)
return landmarks
all_landmark_idx=summary_landmark(FACEMESH_FULL)
pose_landmark_idx=\
summary_landmark(FACEMESH_NOSE.union(*[FACEMESH_RIGHT_EYEBROW,FACEMESH_RIGHT_EYE,\
FACEMESH_LEFT_EYE, FACEMESH_LEFT_EYEBROW,])).union([162,127,234,93,389,356,454,323])
content_landmark_idx= all_landmark_idx - pose_landmark_idx
def draw_landmarks(
image: np.ndarray,
landmark_list: List,
connections: Optional[List[Tuple[int, int]]] = None,
landmark_drawing_spec: Union[DrawingSpec,
Mapping[int, DrawingSpec]] = DrawingSpec(
color=RED_COLOR),
connection_drawing_spec: Union[DrawingSpec,
Mapping[Tuple[int, int],
DrawingSpec]] = DrawingSpec()):
"""Draws the landmarks and the connections on the image.
Args:
image: A three channel BGR image represented as numpy ndarray.
landmark_list: A normalized landmark list proto message to be annotated on
the image.
connections: A list of landmark index tuples that specifies how landmarks to
be connected in the drawing.
landmark_drawing_spec: Either a DrawingSpec object or a mapping from
hand landmarks to the DrawingSpecs that specifies the landmarks' drawing
settings such as color, line thickness, and circle radius.
If this argument is explicitly set to None, no landmarks will be drawn.
connection_drawing_spec: Either a DrawingSpec object or a mapping from
hand connections to the DrawingSpecs that specifies the
connections' drawing settings such as color and line thickness.
If this argument is explicitly set to None, no landmark connections will
be drawn.
Raises:
ValueError: If one of the followings:
a) If the input image is not three channel BGR.
b) If any connetions contain invalid landmark index.
"""
if not landmark_list:
return
if image.shape[2] != _BGR_CHANNELS:
raise ValueError('Input image must contain three channel bgr data.')
image_rows, image_cols, _ = image.shape
idx_to_coordinates = {}
for landmark in landmark_list:
# if ((landmark.HasField('visibility') and
# landmark.visibility < _VISIBILITY_THRESHOLD) or
# (landmark.HasField('presence') and
# landmark.presence < _PRESENCE_THRESHOLD)):
# continue
idx=landmark.idx
landmark_px = _normalized_to_pixel_coordinates(landmark.x, landmark.y,
image_cols, image_rows)
if landmark_px:
idx_to_coordinates[idx] = landmark_px
if connections:
num_landmarks = len(landmark_list)
# Draws the connections if the start and end landmarks are both visible.
for connection in connections:
start_idx = connection[0]
end_idx = connection[1]
# if not (0 <= start_idx < num_landmarks and 0 <= end_idx < num_landmarks):
# raise ValueError(f'Landmark index is out of range. Invalid connection '
# f'from landmark #{start_idx} to landmark #{end_idx}.')
if start_idx in idx_to_coordinates and end_idx in idx_to_coordinates:
drawing_spec = connection_drawing_spec[connection] if isinstance(
connection_drawing_spec, Mapping) else connection_drawing_spec
# if start_idx in content_landmark and end_idx in content_landmark:
cv2.line(image, idx_to_coordinates[start_idx],
idx_to_coordinates[end_idx], drawing_spec.color,
drawing_spec.thickness)
return image
# Draws landmark points after finishing the connection lines, which is
# aesthetically better.
# if landmark_drawing_spec:
# for idx, landmark_px in idx_to_coordinates.items():
# drawing_spec = landmark_drawing_spec[idx] if isinstance(
# landmark_drawing_spec, Mapping) else landmark_drawing_spec
# # White circle border
# circle_border_radius = max(drawing_spec.circle_radius + 1,
# int(drawing_spec.circle_radius * 1.2))
# circle_border_radius=circle_border_radius*0.1
# cv2.circle(image, landmark_px, circle_border_radius, WHITE_COLOR,
# drawing_spec.thickness)
# Fill color into the circle
# cv2.circle(image, landmark_px, 1,
# drawing_spec.color, drawing_spec.thickness)
# cv2.putText(image,str(idx),landmark_px,cv2.FONT_HERSHEY_SIMPLEX,0.5,(255,0,0),1,cv2.LINE_AA)