-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhyperparams.py
78 lines (76 loc) · 3.49 KB
/
hyperparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import os
import librosa
import pyworld
import glob
import numpy as np
class hyperparams:
def __init__(self):
#-----------------------Preprocess params--------------------------#
########Params you may need to change############
self.WAVS_DIR = './data/wavs'
self.LABELS_DIR = './data/labels'
self.DATA_DIR = './data' # String. Save train and test data, min max vector and mean std vector.
self.SR = 16000
self.N_FFT = 512
self.TRAIN_SIZE = 9000 # An integer. train data size. TEST_SIZE is the rest.
self.PRE_MULTI = False # Boolean. Multiprocess can speed up preparing data in pre process. If true Defaults num_cpu//2.
#################################################
self.QS_PATH = './questions-mandarin.hed'
self.DUR_TF_DIR = os.path.join(self.DATA_DIR, 'dur_tfrecord')
self.SYN_TF_DIR = os.path.join(self.DATA_DIR, 'syn_tfrecord')
self.TEMP_DIR = os.path.join(self.DATA_DIR, 'temp')
self.COARSE_CODE_DIM = 3
self.FRAME_POSITION_DIM = 1
self.F0_DIM = 1
self.CODED_SP_DIM = 60 # An integer. coded sp features is constriction of sp features.
self.CODED_AP_DIM = self.get_codedap_dim() # An integer.
self.VUV_DIM = 1
self.DELTA_WIN = [-0.5, 0.0, 0.5] # Delta: First Order Difference
self.ACC_WIN = [1.0, -2.0, 1.0] # Acc: Second Order Difference
self.ACOUSTIC_DIM = self.get_acoustic_dim()
self.DUR_LAB_DIM = 467
self.SYN_LAB_DIM = 471
self.DURATION_DIM = 1
self.FMIN = 0.01
self.FMAX = 0.99
# -----------------------Train params-------------------------------#
self.DUR_IN_DIM = self.DUR_LAB_DIM
self.DUR_OUT_DIM = self.DURATION_DIM
self.SYN_IN_DIM = self.SYN_LAB_DIM
self.SYN_OUT_DIM = self.ACOUSTIC_DIM
########Params you may need to change############
self.DUR_MODEL_DIR = './dur_model'
self.DUR_LOG_DIR = './dur_logs'
self.SYN_MODEL_DIR = './syn_model'
self.SYN_LOG_DIR = './syn_logs'
self.TRAIN_GRAPH = 'duration' # Options in ['duration', 'acoustic']. If training acoustic model then 'acoustic'.
self.TEST_GRAPH = 'duration' # Options in ['duration', 'acoustic']. If testing acoustic model then 'acoustic'.
#################################################
########Params you may need to change############
self.DUR_BATCH = 64
self.DUR_EPOCH = 30
self.SYN_BATCH = 256
self.SYN_EPOCH = 30
self.DROPOUT_RATE = 0.5
self.DUR_FC_NUM = 6
self.DUR_LR = 0.001
self.DUR_LR_DECAY_STEPS = 400
self.DUR_LR_DECAY_RATE = 0.5
self.DUR_PER_STEPS = 100
self.SYN_LR = 0.001
self.SYN_LR_DECAY_STEPS = 200
self.SYN_LR_DECAY_RATE = 0.5
self.SYN_K = 8
self.SYN_HIAHWAY_BLOCK = 2
self.SYN_PER_STEPS = 100
#################################################
def get_acoustic_dim(self):
return self.F0_DIM * 3 + self.CODED_SP_DIM * 3 + self.CODED_AP_DIM * 3 + self.VUV_DIM
def get_codedap_dim(self):
fpath = glob.glob(f'{self.WAVS_DIR}/*.wav')[0]
y, _ = librosa.load(fpath, sr=self.SR, dtype=np.float64)
f0, timeaxis = pyworld.harvest(y, self.SR, f0_floor=71.0, f0_ceil=500.0)
ap = pyworld.d4c(y, f0, timeaxis, self.SR, fft_size=self.N_FFT)
coded_ap = pyworld.code_aperiodicity(ap, self.SR)
codedap_dim = coded_ap.shape[1]
return codedap_dim