-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo_bpf.py
executable file
·96 lines (88 loc) · 5.13 KB
/
demo_bpf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python3
from HandTrackerRenderer import HandTrackerRenderer
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-e', '--edge', action="store_true",
help="Use Edge mode (postprocessing runs on the device)")
parser_tracker = parser.add_argument_group("Tracker arguments")
parser_tracker.add_argument('-i', '--input', type=str,
help="Path to video or image file to use as input (if not specified, use OAK color camera)")
parser_tracker.add_argument("--pd_model", type=str,
help="Path to a blob file for palm detection model")
parser_tracker.add_argument('--no_lm', action="store_true",
help="Only the palm detection model is run (no hand landmark model)")
parser_tracker.add_argument("--lm_model", type=str,
help="Landmark model 'full', 'lite', 'sparse' or path to a blob file")
parser_tracker.add_argument('--use_world_landmarks', action="store_true",
help="Fetch landmark 3D coordinates in meter")
parser_tracker.add_argument('-s', '--solo', action="store_true",
help="Solo mode: detect one hand max. If not used, detect 2 hands max (Duo mode)")
parser_tracker.add_argument('-xyz', "--xyz", action="store_true",
help="Enable spatial location measure of palm centers")
parser_tracker.add_argument('-g', '--gesture', action="store_true",
help="Enable gesture recognition")
parser_tracker.add_argument('-c', '--crop', action="store_true",
help="Center crop frames to a square shape")
parser_tracker.add_argument('-f', '--internal_fps', type=int,
help="Fps of internal color camera. Too high value lower NN fps (default= depends on the model)")
parser_tracker.add_argument("-r", "--resolution", choices=['full', 'ultra'], default='full',
help="Sensor resolution: 'full' (1920x1080) or 'ultra' (3840x2160) (default=%(default)s)")
parser_tracker.add_argument('--internal_frame_height', type=int,
help="Internal color camera frame height in pixels")
parser_tracker.add_argument("-bpf", "--body_pre_focusing", default='higher', choices=['right', 'left', 'group', 'higher'],
help="Enable Body Pre Focusing")
parser_tracker.add_argument('-ah', '--all_hands', action="store_true",
help="In Body Pre Focusing mode, consider all hands (not only the hands up)")
parser_tracker.add_argument('--single_hand_tolerance_thresh', type=int, default=10,
help="(Duo mode only) Number of frames after only one hand is detected before calling palm detection (default=%(default)s)")
parser_tracker.add_argument('--dont_force_same_image', action="store_true",
help="(Edge Duo mode only) Don't force the use the same image when inferring the landmarks of the 2 hands (slower but skeleton less shifted)")
parser_tracker.add_argument('-lmt', '--lm_nb_threads', type=int, choices=[1,2], default=2,
help="Number of the landmark model inference threads (default=%(default)i)")
parser_tracker.add_argument('-t', '--trace', type=int, nargs="?", const=1, default=0,
help="Print some debug infos. The type of info depends on the optional argument.")
parser_renderer = parser.add_argument_group("Renderer arguments")
parser_renderer.add_argument('-o', '--output',
help="Path to output video file")
args = parser.parse_args()
dargs = vars(args)
tracker_args = {a:dargs[a] for a in ['pd_model', 'lm_model', 'internal_fps', 'internal_frame_height'] if dargs[a] is not None}
if args.edge:
from HandTrackerBpfEdge import HandTrackerBpf
tracker_args['use_same_image'] = not args.dont_force_same_image
else:
from HandTrackerBpf import HandTrackerBpf
tracker = HandTrackerBpf(
input_src=args.input,
use_lm= not args.no_lm,
use_world_landmarks=args.use_world_landmarks,
use_gesture=args.gesture,
xyz=args.xyz,
solo=args.solo,
crop=args.crop,
resolution=args.resolution,
body_pre_focusing=args.body_pre_focusing,
hands_up_only=not args.all_hands,
single_hand_tolerance_thresh=args.single_hand_tolerance_thresh,
lm_nb_threads=args.lm_nb_threads,
stats=True,
trace=args.trace,
**tracker_args
)
renderer = HandTrackerRenderer(
tracker=tracker,
output=args.output)
while True:
# Run hand tracker on next frame
# 'bag' contains some information related to the frame
# and not related to a particular hand like body keypoints in Body Pre Focusing mode
# Currently 'bag' contains meaningful information only when Body Pre Focusing is used
frame, hands, bag = tracker.next_frame()
if frame is None: break
# Draw hands
frame = renderer.draw(frame, hands, bag)
key = renderer.waitKey(delay=1)
if key == 27 or key == ord('q'):
break
renderer.exit()
tracker.exit()