From 9a7fabb9bd8f0d9f2dba60d49040c369ba17bcce Mon Sep 17 00:00:00 2001 From: Laurent Mackay Date: Wed, 21 Aug 2019 10:39:58 -0400 Subject: [PATCH 1/2] halfway there --- fooof/fit.py | 30 ++++++++++++++++++++++++++---- 1 file changed, 26 insertions(+), 4 deletions(-) diff --git a/fooof/fit.py b/fooof/fit.py index 5ee3624c..2d5e00a4 100644 --- a/fooof/fit.py +++ b/fooof/fit.py @@ -321,7 +321,7 @@ def report(self, freqs=None, power_spectrum=None, freq_range=None, plt_log=False self.print_results(False) - def fit(self, freqs=None, power_spectrum=None, freq_range=None): + def fit(self, freqs=None, power_spectrum=None, freq_range=None, ap_range=None): """Fit the full power spectrum as a combination of periodic and aperiodic components. Parameters @@ -340,7 +340,7 @@ def fit(self, freqs=None, power_spectrum=None, freq_range=None): # If freqs & power_spectrum provided together, add data to object. if freqs is not None and power_spectrum is not None: - self.add_data(freqs, power_spectrum, freq_range) + self.add_data(freqs, power_spectrum, freq_range if ap_range is None else None) # If power spectrum provided alone, add to object, and use existing frequency data # Note: be careful passing in power_spectrum data like this: # It assumes the power_spectrum is already logged, with correct freq_range. @@ -359,15 +359,37 @@ def fit(self, freqs=None, power_spectrum=None, freq_range=None): # Cause of failure: RuntimeError, failure to find parameters in curve_fit try: + if ap_range: + ap_inds = (self.freqs >= ap_range[0]) & (self.freqs <= ap_range[1]) + ap_freqs = self.freqs[ap_inds] + ap_spectrum = self.power_spectrum[ap_inds] + else: + ap_freqs = self.freqs + ap_spectrum = self.power_spectrum + # Fit the aperiodic component - self.aperiodic_params_ = self._robust_ap_fit(self.freqs, self.power_spectrum) + self.aperiodic_params_ = self._robust_ap_fit(ap_freqs, ap_spectrum) self._ap_fit = gen_aperiodic(self.freqs, self.aperiodic_params_) # Flatten the power_spectrum using fit aperiodic fit self._spectrum_flat = self.power_spectrum - self._ap_fit + + if ap_range: + per_inds = (self.freqs >= ap_range[0]) & (self.freqs <= ap_range[1]) + freqs_0 = self.freqs + self.freqs = self.freqs[per_inds] + per_spectrum_flat = self._spectrum_flat[per_inds] + if freq_range: + self.freq_range = freq_range + else: + per_spectrum_flat = np.copy(self._spectrum_flat) + # Find peaks, and fit them with gaussians - self.gaussian_params_ = self._fit_peaks(np.copy(self._spectrum_flat)) + self.gaussian_params_ = self._fit_peaks(per_spectrum_flat) + + if ap_range: + self.freqs=freqs_0 # Calculate the peak fit # Note: if no peaks are found, this creates a flat (all zero) peak fit. From 29c784681e7de000c23747d3781212e5a164d126 Mon Sep 17 00:00:00 2001 From: Laurent Mackay Date: Thu, 22 Aug 2019 16:08:22 -0400 Subject: [PATCH 2/2] Adds more flexibility in the aperiodic/oscillatory fitting DESCRIPTION: I have added a keyword `ap_range` to the FOOOF.fit() function. When `ap_range` is specified, the already existing `freq_range` keyword is used to determine the frequencies for the oscillatory fits while the ap_range keyword is used for the aperiodic fit. When it is not specified, everything proceeds as before. This allows the two parts FO and OOF to be more-or-less independent of one another if so-desired. Furthermore, the `ap_range` keyword may also be a set of indices in order to allow for a very simple implementation of exclusion zones. TESTING: Tested on 5 different EEG files, no errors unless inputs are the wrong size. Update: I have also modified the FOOOFGroup.fit() in order to work with this keyword. --- fooof/fit.py | 42 ++++++++++++++++++++++++++++++------------ fooof/funcs.py | 4 ++-- fooof/group.py | 12 ++++++------ 3 files changed, 38 insertions(+), 20 deletions(-) diff --git a/fooof/fit.py b/fooof/fit.py index 2d5e00a4..7bd8cea8 100644 --- a/fooof/fit.py +++ b/fooof/fit.py @@ -332,12 +332,14 @@ def fit(self, freqs=None, power_spectrum=None, freq_range=None, ap_range=None): Power values, which must be input in linear space. freq_range : list of [float, float], optional Frequency range to restrict power spectrum to. If not provided, keeps the entire range. + ap_range : list of [float, float], or np.ndarray of booleans of the same length as freqs, optional. + Frequency range to restrict aperiodic fit to. If not provided, it will be fit on the range specified + by freq_range. Notes ----- Data is optional if data has been already been added to FOOOF object. """ - # If freqs & power_spectrum provided together, add data to object. if freqs is not None and power_spectrum is not None: self.add_data(freqs, power_spectrum, freq_range if ap_range is None else None) @@ -358,9 +360,15 @@ def fit(self, freqs=None, power_spectrum=None, freq_range=None, ap_range=None): # In rare cases, the model fails to fit. Therefore it's in a try/except # Cause of failure: RuntimeError, failure to find parameters in curve_fit try: + + if ap_range is not None:#isolate aperiodic frequencies/spectrum + if not isinstance(ap_range,np.ndarray) or ap_range.shape[-1]==2: + ap_inds = (self.freqs >= ap_range[0]) & (self.freqs <= ap_range[1]) + elif ap_range.shape[-1]==self.freqs.shape[-1]: + ap_inds = ap_range + else: + raise ValueError('ap_range must have the same length as freqs - can not proceed') - if ap_range: - ap_inds = (self.freqs >= ap_range[0]) & (self.freqs <= ap_range[1]) ap_freqs = self.freqs[ap_inds] ap_spectrum = self.power_spectrum[ap_inds] else: @@ -374,22 +382,27 @@ def fit(self, freqs=None, power_spectrum=None, freq_range=None, ap_range=None): # Flatten the power_spectrum using fit aperiodic fit self._spectrum_flat = self.power_spectrum - self._ap_fit - if ap_range: - per_inds = (self.freqs >= ap_range[0]) & (self.freqs <= ap_range[1]) + + if ap_range is not None:#isolate periodic frequencies/spectrum + per_inds = (self.freqs >= freq_range[0]) & (self.freqs <= freq_range[1]) + per_spectrum_flat = np.copy(self._spectrum_flat[per_inds]) + self._spectrum_flat = per_spectrum_flat + #save/set some attributes so peak fitting works properly freqs_0 = self.freqs self.freqs = self.freqs[per_inds] - per_spectrum_flat = self._spectrum_flat[per_inds] if freq_range: + freq_range_0 = self.freq_range self.freq_range = freq_range - else: - per_spectrum_flat = np.copy(self._spectrum_flat) + # Find peaks, and fit them with gaussians - self.gaussian_params_ = self._fit_peaks(per_spectrum_flat) + self.gaussian_params_ = self._fit_peaks(np.copy(self._spectrum_flat)) - if ap_range: - self.freqs=freqs_0 + if ap_range is not None: + #restore attributes to initial values + self.freqs = freqs_0 + self.freq_range = freq_range_0 # Calculate the peak fit # Note: if no peaks are found, this creates a flat (all zero) peak fit. @@ -398,9 +411,14 @@ def fit(self, freqs=None, power_spectrum=None, freq_range=None, ap_range=None): # Create peak-removed (but not flattened) power spectrum. self._spectrum_peak_rm = self.power_spectrum - self._peak_fit + if ap_range is not None: + ap_spectrum_peak_rm = self._spectrum_peak_rm[ap_inds] + else: + ap_spectrum_peak_rm = self._spectrum_peak_rm + # Run final aperiodic fit on peak-removed power spectrum # Note: This overwrites previous aperiodic fit - self.aperiodic_params_ = self._simple_ap_fit(self.freqs, self._spectrum_peak_rm) + self.aperiodic_params_ = self._simple_ap_fit(ap_freqs, ap_spectrum_peak_rm) self._ap_fit = gen_aperiodic(self.freqs, self.aperiodic_params_) # Create full power_spectrum model fit diff --git a/fooof/funcs.py b/fooof/funcs.py index 8fe9ac62..68e42c2c 100644 --- a/fooof/funcs.py +++ b/fooof/funcs.py @@ -113,7 +113,7 @@ def combine_fooofs(fooofs): return fg -def fit_fooof_group_3d(fg, freqs, power_spectra, freq_range=None, n_jobs=1): +def fit_fooof_group_3d(fg, freqs, power_spectra, freq_range=None, ap_range=None, n_jobs=1): """Run FOOOFGroup across a 3D collection of power spectra. Parameters @@ -138,7 +138,7 @@ def fit_fooof_group_3d(fg, freqs, power_spectra, freq_range=None, n_jobs=1): fgs = [] for cond_spectra in power_spectra: - fg.fit(freqs, cond_spectra, freq_range, n_jobs) + fg.fit(freqs, cond_spectra, freq_range, ap_range, n_jobs) fgs.append(fg.copy()) return fgs diff --git a/fooof/group.py b/fooof/group.py index 87a69a9c..239968ed 100644 --- a/fooof/group.py +++ b/fooof/group.py @@ -145,7 +145,7 @@ def report(self, freqs=None, power_spectra=None, freq_range=None, n_jobs=1): self.print_results(False) - def fit(self, freqs=None, power_spectra=None, freq_range=None, n_jobs=1): + def fit(self, freqs=None, power_spectra=None, freq_range=None, ap_range=None, n_jobs=1): """Run FOOOF across a group of power_spectra. Parameters @@ -167,14 +167,14 @@ def fit(self, freqs=None, power_spectra=None, freq_range=None, n_jobs=1): # If freqs & power spectra provided together, add data to object. if freqs is not None and power_spectra is not None: - self.add_data(freqs, power_spectra, freq_range) + self.add_data(freqs, power_spectra, freq_range if ap_range is None else None) # Run linearly if n_jobs == 1: self._reset_group_results(len(self.power_spectra)) for ind, power_spectrum in \ _progress(enumerate(self.power_spectra), self.verbose, len(self)): - self._fit(power_spectrum=power_spectrum) + self._fit(power_spectrum=power_spectrum, freq_range=freq_range, ap_range=ap_range) self.group_results[ind] = self._get_results() # Run in parallel @@ -182,7 +182,7 @@ def fit(self, freqs=None, power_spectra=None, freq_range=None, n_jobs=1): self._reset_group_results() n_jobs = cpu_count() if n_jobs == -1 else n_jobs with Pool(processes=n_jobs) as pool: - self.group_results = list(_progress(pool.imap(partial(_par_fit, fg=self), + self.group_results = list(_progress(pool.imap(partial(_par_fit, fg=self, freq_range=freq_range, ap_range=ap_range), self.power_spectra), self.verbose, len(self.power_spectra))) @@ -366,10 +366,10 @@ def _check_width_limits(self): ################################################################################################### ################################################################################################### -def _par_fit(power_spectrum, fg): +def _par_fit(power_spectrum, fg, freq_range, ap_range): """Helper function for running in parallel.""" - fg._fit(power_spectrum=power_spectrum) + fg._fit(power_spectrum=power_spectrum, freq_range=freq_range, ap_range=ap_range) return fg._get_results()