forked from THUDM/GLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
1477 lines (1186 loc) · 60 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file contains the logic for loading training and test data for all tasks.
"""
import csv
import json
import os
import random
import copy
import glob
import re
from abc import ABC, abstractmethod
from collections import Counter
from typing import List, Dict, Callable
from torch.utils.data import Dataset
from tqdm import tqdm
import pandas as pd
import numpy as np
from tasks.data_utils import InputExample
from utils import print_rank_0
from tasks.superglue.pvp import PVPS
from tasks.data_utils import build_input_from_ids, build_sample, num_special_tokens_to_add, build_uni_input_from_ids
from collections import defaultdict
from data_utils.corpora import punctuation_standardization
TRAIN_SET = "train"
DEV_SET = "dev"
TEST_SET = "test"
TRUE_DEV_SET = "true_dev"
UNLABELED_SET = "unlabeled"
SPLIT_TYPES = [TRAIN_SET, DEV_SET, TEST_SET, TRUE_DEV_SET, UNLABELED_SET]
def get_output_func(task_name, args):
def default_output_func(predictions, examples, output_file):
with open(output_file, "w") as output:
for prediction, example in zip(predictions, examples):
data = {"idx": example["idx"], "label": prediction}
output.write(json.dumps(data) + "\n")
if task_name in PROCESSORS:
return PROCESSORS[task_name](args).output_prediction
else:
return default_output_func
def read_tsv(path, **kwargs):
return pd.read_csv(path, sep='\t', quoting=csv.QUOTE_NONE, dtype=str, na_filter=False, **kwargs)
class MultiChoiceDataset(Dataset):
def __init__(self, args, path, tokenizer, seq_length):
args.variable_num_choices = True
self.args = args
self.tokenizer = tokenizer
self.seq_length = seq_length
self.unidirectional = args.unidirectional
self.example_list = []
with open(path, "r", encoding="utf-8") as file:
for idx, line in enumerate(file):
item = json.loads(line)
item["idx"] = str(idx)
self.example_list.append(item)
self.examples = {example["idx"]: example for example in self.example_list}
print_rank_0(f"Creating {len(self.example_list)} examples")
self.dataset_name = "multichoice-" + os.path.basename(path).split(".")[0]
def __len__(self):
return len(self.example_list)
def get_tokenized_input(self, item, key):
if key in item:
return item[key]
pretokenized_key = key + "_pretokenized"
assert pretokenized_key in item
if isinstance(item[pretokenized_key], list):
result = []
for raw in item[pretokenized_key]:
result.append(self.tokenizer.EncodeAsIds(raw))
return result
else:
return self.tokenizer.EncodeAsIds(item[pretokenized_key])
def __getitem__(self, idx):
item = self.example_list[idx]
inputs = self.tokenizer.EncodeAsIds(item["inputs_pretokenized"])
choices = [self.tokenizer.EncodeAsIds(choice) for choice in item["choices_pretokenized"]]
label = item.get("label", 0)
mask_id = self.tokenizer.get_command("gMASK").Id if self.unidirectional else self.tokenizer.get_command("MASK").Id
if not self.unidirectional:
if mask_id not in inputs:
inputs.append(mask_id)
max_choice_length = max(map(len, choices))
if len(inputs) + max_choice_length + 2 > self.seq_length:
text_length = self.seq_length - max_choice_length - 2
inputs = inputs[-text_length:]
ids_list, positions_list, sep_list, mask_list, target_list = [], [], [], [], []
for choice in choices:
if not self.unidirectional:
data = build_input_from_ids(inputs, None, choice, self.seq_length, self.tokenizer, args=self.args,
add_cls=True, add_sep=False, add_piece=True, mask_id=mask_id)
else:
data = build_uni_input_from_ids(inputs, choice, self.seq_length, self.tokenizer, args=self.args,
add_cls=True, add_sep=False, mask_id=mask_id)
ids, types, paddings, position_ids, sep, target_ids, loss_masks = data
ids_list.append(ids)
positions_list.append(position_ids)
sep_list.append(sep)
target_list.append(target_ids)
mask_list.append(loss_masks)
sample = build_sample(ids_list, positions=positions_list, masks=sep_list, label=label,
logit_mask=mask_list, target=target_list,
unique_id=item["idx"])
return sample
class SuperGlueDataset(Dataset):
def __init__(self, args, task_name, data_dir, seq_length, split, tokenizer, for_train=False,
pattern_ensemble=False, pattern_text=False):
self.processor = PROCESSORS[task_name](args)
args.variable_num_choices = self.processor.variable_num_choices
print_rank_0(
f"Creating {task_name} dataset from file at {data_dir} (split={split})"
)
self.dataset_name = f"{task_name}-{split}"
self.cloze_eval = args.cloze_eval
self.seq_length = seq_length
self.tokenizer = tokenizer
self.pattern_ensemble = pattern_ensemble
self.pattern_text = pattern_text
if pattern_text:
assert self.cloze_eval, "Labeled examples only exist in cloze evaluation"
self.args = args
if split == DEV_SET:
example_list = self.processor.get_dev_examples(data_dir, for_train=for_train)
elif split == TEST_SET:
example_list = self.processor.get_test_examples(data_dir)
elif split == TRUE_DEV_SET:
example_list = self.processor.get_true_dev_examples(data_dir)
elif split == TRAIN_SET:
if task_name == "wsc":
example_list = self.processor.get_train_examples(data_dir, cloze_eval=args.cloze_eval)
else:
example_list = self.processor.get_train_examples(data_dir)
elif split == UNLABELED_SET:
example_list = self.processor.get_unlabeled_examples(data_dir)
for example in example_list:
example.label = self.processor.get_labels()[0]
else:
raise ValueError(f"'split' must be one of {SPLIT_TYPES}, got '{split}' instead")
if split == TEST_SET:
self.labeled = False
else:
self.labeled = True
label_distribution = Counter(example.label for example in example_list)
print_rank_0(
f"Returning {len(example_list)} {split} examples with label dist.: {list(label_distribution.items())}")
self.samples = []
example_list.sort(key=lambda x: x.num_choices)
self.example_list = example_list
if self.cloze_eval:
if self.pattern_ensemble:
pattern_ids = PVPS[task_name].available_patterns()
self.pvps = []
for pattern_id in pattern_ids:
self.pvps.append(PVPS[task_name](args, tokenizer, self.processor.get_labels(), seq_length,
pattern_id=pattern_id, num_prompt_tokens=args.num_prompt_tokens,
is_multi_token=args.multi_token,
max_segment_length=args.segment_length,
fast_decode=args.fast_decode, split=split))
else:
self.pvp = PVPS[task_name](args, tokenizer, self.processor.get_labels(), seq_length,
pattern_id=args.pattern_id, num_prompt_tokens=args.num_prompt_tokens,
is_multi_token=args.multi_token, max_segment_length=args.segment_length,
fast_decode=args.fast_decode, split=split)
self.examples = {example.guid: example for example in example_list}
def __len__(self):
if self.cloze_eval and self.pattern_ensemble:
return len(self.example_list) * len(self.pvps)
else:
return len(self.example_list)
def __getitem__(self, idx):
sample_idx = idx % len(self.example_list)
example = self.example_list[sample_idx]
if self.cloze_eval:
kwargs = {}
if self.pattern_text:
kwargs = {"labeled": True, "priming": True}
if self.pattern_ensemble:
pvp_idx = idx // len(self.example_list)
sample = self.pvps[pvp_idx].encode(example, **kwargs)
else:
sample = self.pvp.encode(example, **kwargs)
if self.pattern_text:
eos_id = self.tokenizer.get_command('eos').Id
cls_id = self.tokenizer.get_command('ENC').Id
input_ids = [cls_id] + sample + [eos_id]
sample = {'text': input_ids, 'loss_mask': np.array([1] * len(input_ids))}
else:
sample = self.processor.encode(example, self.tokenizer, self.seq_length, self.args)
return sample
class DataProcessor(ABC):
"""
Abstract class that provides methods for loading training, testing, development and unlabeled examples for a given
task
"""
def __init__(self, args):
self.args = args
self.num_truncated = 0
def output_prediction(self, predictions, examples, output_file):
with open(output_file, "w") as output:
for prediction, example in zip(predictions, examples):
prediction = self.get_labels()[prediction]
data = {"idx": example.idx, "label": prediction}
output.write(json.dumps(data) + "\n")
@property
def variable_num_choices(self):
return False
@abstractmethod
def get_train_examples(self, data_dir) -> List[InputExample]:
"""Get a collection of `InputExample`s for the train set."""
pass
@abstractmethod
def get_dev_examples(self, data_dir, for_train=False) -> List[InputExample]:
"""Get a collection of `InputExample`s for the dev set."""
pass
def get_test_examples(self, data_dir) -> List[InputExample]:
"""Get a collection of `InputExample`s for the test set."""
return []
def get_unlabeled_examples(self, data_dir) -> List[InputExample]:
"""Get a collection of `InputExample`s for the unlabeled set."""
return []
@abstractmethod
def get_labels(self) -> List[str]:
"""Get the list of labels for this data set."""
pass
def get_classifier_input(self, example: InputExample, tokenizer):
return example.text_a, example.text_b
def encode(self, example: InputExample, tokenizer, seq_length, args):
text_a, text_b = self.get_classifier_input(example, tokenizer)
tokens_a = tokenizer.EncodeAsIds(text_a).tokenization
tokens_b = tokenizer.EncodeAsIds(text_b).tokenization
num_special_tokens = num_special_tokens_to_add(tokens_a, tokens_b, None, add_cls=True, add_sep=True,
add_piece=False)
if len(tokens_a) + len(tokens_b) + num_special_tokens > seq_length:
self.num_truncated += 1
data = build_input_from_ids(tokens_a, tokens_b, None, seq_length, tokenizer, args=args,
add_cls=True, add_sep=True, add_piece=False)
ids, types, paddings, position_ids, sep, target_ids, loss_masks = data
label = 0
if example.label is not None:
label = example.label
label = self.get_labels().index(label)
if args.pretrained_bert:
sample = build_sample(ids, label=label, types=types, paddings=paddings,
unique_id=example.guid)
else:
sample = build_sample(ids, positions=position_ids, masks=sep, label=label,
unique_id=example.guid)
return sample
class SuperGLUEProcessor(DataProcessor):
def __init__(self, args):
super(SuperGLUEProcessor, self).__init__(args)
self.few_superglue = args.few_superglue
def get_train_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "train.jsonl"), "train")
def get_dev_examples(self, data_dir, for_train=False):
if self.few_superglue:
return self._create_examples(os.path.join(data_dir, "dev32.jsonl"), "dev")
else:
return self._create_examples(os.path.join(data_dir, "val.jsonl"), "dev")
def get_test_examples(self, data_dir):
if self.few_superglue:
return self._create_examples(os.path.join(data_dir, "val.jsonl"), "test")
else:
return self._create_examples(os.path.join(data_dir, "test.jsonl"), "test")
def get_unlabeled_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "unlabeled.jsonl"), "unlabeled")
def _create_examples(self, *args, **kwargs):
pass
class RteProcessor(SuperGLUEProcessor):
"""Processor for the RTE data set."""
def get_labels(self):
return ["entailment", "not_entailment"]
def _create_examples(self, path: str, set_type: str, hypothesis_name: str = "hypothesis",
premise_name: str = "premise") -> List[InputExample]:
examples = []
with open(path, encoding='utf8') as f:
for line_idx, line in enumerate(f):
example_json = json.loads(line)
idx = example_json['idx']
if isinstance(idx, str):
try:
idx = int(idx)
except ValueError:
idx = line_idx
label = example_json.get('label')
guid = "%s-%s" % (set_type, idx)
text_a = punctuation_standardization(example_json[premise_name])
text_b = punctuation_standardization(example_json[hypothesis_name])
example = InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label, idx=idx)
examples.append(example)
return examples
class AxGProcessor(RteProcessor):
"""Processor for the AX-G diagnostic data set."""
def get_train_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "AX-g.jsonl"), "train")
def get_test_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "AX-g.jsonl"), "test")
class AxBProcessor(RteProcessor):
"""Processor for the AX-B diagnostic data set."""
def get_train_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "AX-b.jsonl"), "train")
def get_test_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "AX-b.jsonl"), "test")
def _create_examples(self, path, set_type, hypothesis_name="sentence2", premise_name="sentence1"):
return super()._create_examples(path, set_type, hypothesis_name, premise_name)
class CbProcessor(RteProcessor):
"""Processor for the CB data set."""
def get_labels(self):
return ["entailment", "contradiction", "neutral"]
class WicProcessor(SuperGLUEProcessor):
"""Processor for the WiC data set."""
def get_labels(self):
return ["false", "true"]
@staticmethod
def _create_examples(path: str, set_type: str) -> List[InputExample]:
examples = []
with open(path, encoding='utf8') as f:
for line in f:
example_json = json.loads(line)
idx = example_json['idx']
if isinstance(idx, str):
idx = int(idx)
label = "true" if example_json.get('label') else "false"
guid = "%s-%s" % (set_type, idx)
text_a = punctuation_standardization(example_json['sentence1'])
text_b = punctuation_standardization(example_json['sentence2'])
meta = {'word': example_json['word']}
example = InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label, idx=idx, meta=meta)
examples.append(example)
return examples
def get_classifier_input(self, example: InputExample, tokenizer):
text_a = example.meta['word'] + ': ' + example.text_a
return text_a, example.text_b
class WscProcessor(SuperGLUEProcessor):
"""Processor for the WSC data set."""
@property
def variable_num_choices(self):
return self.args.wsc_negative
def get_train_examples(self, data_dir, cloze_eval=True):
return self._create_examples(os.path.join(data_dir, "train.jsonl"), "train", cloze_eval=cloze_eval)
def get_labels(self):
return ["False", "True"]
def get_classifier_input(self, example: InputExample, tokenizer):
target = example.meta['span1_text']
pronoun_idx = example.meta['span2_index']
# mark the pronoun with asterisks
words_a = example.text_a.split()
words_a[pronoun_idx] = '*' + words_a[pronoun_idx] + '*'
text_a = ' '.join(words_a)
text_b = target
return text_a, text_b
def _create_examples(self, path: str, set_type: str, cloze_eval=True) -> List[InputExample]:
examples = []
with open(path, encoding='utf8') as f:
for line in f:
example_json = json.loads(line)
idx = example_json['idx']
label = str(example_json['label']) if 'label' in example_json else None
guid = "%s-%s" % (set_type, idx)
text_a = punctuation_standardization(example_json['text'])
meta = {
'span1_text': example_json['target']['span1_text'],
'span2_text': example_json['target']['span2_text'],
'span1_index': example_json['target']['span1_index'],
'span2_index': example_json['target']['span2_index']
}
if 'candidates' in example_json:
candidates = [cand['text'] for cand in example_json['candidates']]
# candidates = list(set(candidates))
filtered = []
for i, cand in enumerate(candidates):
if not cand in candidates[:i]:
filtered.append(cand)
candidates = filtered
# the indices in the dataset are wrong for some examples, so we manually fix them
span1_index, span1_text = meta['span1_index'], meta['span1_text']
span2_index, span2_text = meta['span2_index'], meta['span2_text']
words_a = text_a.split()
words_a_lower = text_a.lower().split()
words_span1_text = span1_text.lower().split()
span1_len = len(words_span1_text)
if words_a_lower[span1_index:span1_index + span1_len] != words_span1_text:
for offset in [-1, +1]:
if words_a_lower[span1_index + offset:span1_index + span1_len + offset] == words_span1_text:
span1_index += offset
# if words_a_lower[span1_index:span1_index + span1_len] != words_span1_text:
# print_rank_0(f"Got '{words_a_lower[span1_index:span1_index + span1_len]}' but expected "
# f"'{words_span1_text}' at index {span1_index} for '{words_a}'")
if words_a[span2_index] != span2_text:
for offset in [-1, +1]:
if words_a[span2_index + offset] == span2_text:
span2_index += offset
if words_a[span2_index] != span2_text and words_a[span2_index].startswith(span2_text):
words_a = words_a[:span2_index] \
+ [words_a[span2_index][:len(span2_text)], words_a[span2_index][len(span2_text):]] \
+ words_a[span2_index + 1:]
assert words_a[span2_index] == span2_text, \
f"Got '{words_a[span2_index]}' but expected '{span2_text}' at index {span2_index} for '{words_a}'"
text_a = ' '.join(words_a)
meta['span1_index'], meta['span2_index'] = span1_index, span2_index
if self.args.task == 'wsc1':
example = InputExample(guid=guid, text_a=text_a, text_b=span1_text,
label=label, meta=meta, idx=idx)
examples.append(example)
if set_type == 'train' and label == 'True':
for cand in candidates:
example = InputExample(guid=guid, text_a=text_a, text_b=cand,
label='False', meta=meta, idx=idx)
examples.append(example)
continue
if cloze_eval and set_type == 'train' and label != 'True':
continue
if set_type == 'train' and 'candidates' in example_json and len(candidates) > 9:
for i in range(0, len(candidates), 9):
_meta = copy.deepcopy(meta)
_meta['candidates'] = candidates[i:i + 9]
if len(_meta['candidates']) < 9:
_meta['candidates'] += candidates[:9 - len(_meta['candidates'])]
example = InputExample(guid=guid, text_a=text_a, label=label, meta=_meta, idx=idx)
examples.append(example)
else:
if 'candidates' in example_json:
meta['candidates'] = candidates
example = InputExample(guid=guid, text_a=text_a, label=label, meta=meta, idx=idx)
examples.append(example)
return examples
class BoolQProcessor(SuperGLUEProcessor):
"""Processor for the BoolQ data set."""
def get_labels(self):
return ["false", "true"]
@staticmethod
def _create_examples(path: str, set_type: str) -> List[InputExample]:
examples = []
with open(path, encoding='utf8') as f:
for line in f:
example_json = json.loads(line)
idx = example_json['idx']
label = str(example_json['label']).lower() if 'label' in example_json else None
guid = "%s-%s" % (set_type, idx)
text_a = punctuation_standardization(example_json['passage'])
text_b = punctuation_standardization(example_json['question'])
example = InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label, idx=idx)
examples.append(example)
return examples
class CopaProcessor(SuperGLUEProcessor):
"""Processor for the COPA data set."""
def get_labels(self):
return [0, 1]
def encode(self, example: InputExample, tokenizer, seq_length, args):
if args.pretrained_bert:
ids_list, types_list, paddings_list = [], [], []
else:
ids_list, positions_list, sep_list = [], [], []
question = example.meta['question']
joiner = 'because' if question == 'cause' else 'so'
text_a = punctuation_standardization(example.text_a) + " " + joiner
tokens_a = tokenizer.EncodeAsIds(text_a).tokenization
for choice in [example.meta["choice1"], example.meta["choice2"]]:
choice = punctuation_standardization(choice)
tokens_b = tokenizer.EncodeAsIds(choice).tokenization
num_special_tokens = num_special_tokens_to_add(tokens_a, tokens_b, None, add_cls=True, add_sep=True,
add_piece=False)
if len(tokens_a) + len(tokens_b) + num_special_tokens > seq_length:
self.num_truncated += 1
data = build_input_from_ids(tokens_a, tokens_b, None, seq_length, tokenizer, args,
add_cls=True, add_sep=True, add_piece=False)
ids, types, paddings, position_ids, sep, target_ids, loss_masks = data
if args.pretrained_bert:
ids_list.append(ids)
types_list.append(types)
paddings_list.append(paddings)
else:
ids_list.append(ids)
positions_list.append(position_ids)
sep_list.append(sep)
label = 0
if example.label is not None:
label = example.label
label = self.get_labels().index(label)
if args.pretrained_bert:
sample = build_sample(ids_list, label=label, types=types_list, paddings=paddings_list,
unique_id=example.guid)
else:
sample = build_sample(ids_list, positions=positions_list, masks=sep_list, label=label,
unique_id=example.guid)
return sample
@staticmethod
def _create_examples(path: str, set_type: str) -> List[InputExample]:
examples = []
with open(path, encoding='utf8') as f:
for line in f:
example_json = json.loads(line)
label = example_json['label'] if 'label' in example_json else None
idx = example_json['idx']
guid = "%s-%s" % (set_type, idx)
text_a = example_json['premise']
meta = {
'choice1': example_json['choice1'],
'choice2': example_json['choice2'],
'question': example_json['question']
}
example = InputExample(guid=guid, text_a=text_a, label=label, meta=meta, idx=idx)
examples.append(example)
if set_type == 'train' or set_type == 'unlabeled':
mirror_examples = []
for ex in examples:
label = 1 if ex.label == 0 else 0
meta = {
'choice1': ex.meta['choice2'],
'choice2': ex.meta['choice1'],
'question': ex.meta['question']
}
mirror_example = InputExample(guid=ex.guid + 'm', text_a=ex.text_a, label=label, meta=meta)
mirror_examples.append(mirror_example)
examples += mirror_examples
print_rank_0(f"Added {len(mirror_examples)} mirror examples, total size is {len(examples)}...")
return examples
class MultiRcProcessor(SuperGLUEProcessor):
"""Processor for the MultiRC data set."""
def get_labels(self):
return [0, 1]
@staticmethod
def _create_examples(path: str, set_type: str) -> List[InputExample]:
examples = []
with open(path, encoding='utf8') as f:
for line in f:
example_json = json.loads(line)
passage_idx = example_json['idx']
text = punctuation_standardization(example_json['passage']['text'])
questions = example_json['passage']['questions']
for question_json in questions:
question = punctuation_standardization(question_json["question"])
question_idx = question_json['idx']
answers = question_json["answers"]
for answer_json in answers:
label = answer_json["label"] if 'label' in answer_json else None
answer_idx = answer_json["idx"]
guid = f'{set_type}-p{passage_idx}-q{question_idx}-a{answer_idx}'
meta = {
'passage_idx': passage_idx,
'question_idx': question_idx,
'answer_idx': answer_idx,
'answer': punctuation_standardization(answer_json["text"])
}
idx = [passage_idx, question_idx, answer_idx]
example = InputExample(guid=guid, text_a=text, text_b=question, label=label, meta=meta, idx=idx)
examples.append(example)
question_indices = list(set(example.meta['question_idx'] for example in examples))
label_distribution = Counter(example.label for example in examples)
print_rank_0(
f"Returning {len(examples)} examples corresponding to {len(question_indices)} questions with label "
f"distribution {list(label_distribution.items())}")
return examples
def output_prediction(self, predictions, examples, output_file):
with open(output_file, "w") as output:
passage_dict = defaultdict(list)
for prediction, example in zip(predictions, examples):
passage_dict[example.meta["passage_idx"]].append((prediction, example))
for passage_idx, data in passage_dict.items():
question_dict = defaultdict(list)
passage_data = {"idx": passage_idx, "passage": {"questions": []}}
for prediction, example in data:
question_dict[example.meta["question_idx"]].append((prediction, example))
for question_idx, data in question_dict.items():
question_data = {"idx": question_idx, "answers": []}
for prediction, example in data:
prediction = self.get_labels()[prediction]
question_data["answers"].append({"idx": example.meta["answer_idx"], "label": prediction})
passage_data["passage"]["questions"].append(question_data)
output.write(json.dumps(passage_data) + "\n")
def get_classifier_input(self, example: InputExample, tokenizer):
text_a = example.text_a
text_b = ' '.join([example.text_b, "answer:", example.meta['answer']])
return text_a, text_b
class RaceProcessor(DataProcessor):
@property
def variable_num_choices(self):
return True
def get_labels(self):
return ["A", "B", "C", "D"]
def get_train_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "train"), "train")
def get_dev_examples(self, data_dir, for_train=False):
return self._create_examples(os.path.join(data_dir, "dev"), "dev", for_train=for_train)
def get_test_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "test"), "test")
@staticmethod
def _create_examples(path, set_type, for_train=False) -> List[InputExample]:
examples = []
def clean_text(text):
"""Remove new lines and multiple spaces and adjust end of sentence dot."""
text = text.replace("\n", " ")
text = re.sub(r'\s+', ' ', text)
for _ in range(3):
text = text.replace(' . ', '. ')
return text
filenames = glob.glob(os.path.join(path, "middle", '*.txt')) + glob.glob(os.path.join(path, "high", "*.txt"))
for filename in filenames:
with open(filename, 'r') as f:
for line in f:
data = json.loads(line)
idx = data["id"]
context = data["article"]
questions = data["questions"]
choices = data["options"]
answers = data["answers"]
# Check the length.
assert len(questions) == len(answers)
assert len(questions) == len(choices)
context = clean_text(context)
for question_idx, question in enumerate(questions):
answer = answers[question_idx]
choice = choices[question_idx]
guid = f'{set_type}-p{idx}-q{question_idx}'
ex_idx = [set_type, idx, question_idx]
meta = {
"choices": choice
}
example = InputExample(guid=guid, text_a=context, text_b=question, label=answer, meta=meta,
idx=ex_idx)
examples.append(example)
return examples
class RecordProcessor(SuperGLUEProcessor):
"""Processor for the ReCoRD data set."""
def get_dev_examples(self, data_dir, for_train=False):
return self._create_examples(os.path.join(data_dir, "val.jsonl"), "dev", for_train=for_train)
@property
def variable_num_choices(self):
return True
def get_labels(self):
return ["0", "1"]
def output_prediction(self, predictions, examples, output_file):
with open(output_file, "w") as output:
for prediction, example in zip(predictions, examples):
prediction = example.meta["candidates"][prediction]
data = {"idx": example.idx, "label": prediction}
output.write(json.dumps(data) + "\n")
def encode(self, example: InputExample, tokenizer, seq_length, args):
if args.pretrained_bert:
ids_list, types_list, paddings_list = [], [], []
else:
ids_list, positions_list, sep_list = [], [], []
tokens_a = tokenizer.EncodeAsIds(example.text_a).tokenization
tokens_b = tokenizer.EncodeAsIds(example.text_b).tokenization if example.text_b else None
for answer in example.meta["candidates"]:
answer_ids = tokenizer.EncodeAsIds(answer).tokenization
total_length = len(tokens_a) + len(tokens_b) + len(answer_ids)
total_length += num_special_tokens_to_add(tokens_a, tokens_b + answer_ids, None, add_cls=True, add_sep=True,
add_piece=False)
if total_length > seq_length:
self.num_truncated += 1
data = build_input_from_ids(tokens_a, tokens_b + answer_ids, None, seq_length, tokenizer, args,
add_cls=True, add_sep=True, add_piece=False)
ids, types, paddings, position_ids, sep, target_ids, loss_masks = data
if args.pretrained_bert:
ids_list.append(ids)
types_list.append(types)
paddings_list.append(paddings)
else:
ids_list.append(ids)
positions_list.append(position_ids)
sep_list.append(sep)
label = example.label
label = self.get_labels().index(label)
if args.pretrained_bert:
sample = build_sample(ids_list, label=label, types=types_list, paddings=paddings_list,
unique_id=example.guid)
else:
sample = build_sample(ids_list, positions=positions_list, masks=sep_list, label=label,
unique_id=example.guid)
return sample
@staticmethod
def _create_examples(path, set_type, seed=42, max_train_candidates_per_question: int = 10, for_train=False) -> List[
InputExample]:
examples = []
entity_shuffler = random.Random(seed)
with open(path, encoding='utf8') as f:
for idx, line in enumerate(f):
example_json = json.loads(line)
idx = example_json['idx']
text = punctuation_standardization(example_json['passage']['text'])
entities = set()
for entity_json in example_json['passage']['entities']:
start = entity_json['start']
end = entity_json['end']
entity = punctuation_standardization(text[start:end + 1])
entities.add(entity)
entities = list(entities)
entities.sort()
text = text.replace("@highlight\n", "- ") # we follow the GPT-3 paper wrt @highlight annotations
questions = example_json['qas']
for question_json in questions:
question = punctuation_standardization(question_json['query'])
question_idx = question_json['idx']
answers = set()
for answer_json in question_json.get('answers', []):
answer = punctuation_standardization(answer_json['text'])
answers.add(answer)
answers = list(answers)
if set_type == 'train' or for_train:
# create a single example per *correct* answer
for answer_idx, answer in enumerate(answers):
candidates = [ent for ent in entities if ent not in answers]
if len(candidates) > max_train_candidates_per_question - 1:
entity_shuffler.shuffle(candidates)
candidates = candidates[:max_train_candidates_per_question - 1]
guid = f'{set_type}-p{idx}-q{question_idx}-a{answer_idx}'
meta = {
'passage_idx': idx,
'question_idx': question_idx,
'candidates': [answer] + candidates,
'answers': [answer]
}
ex_idx = [idx, question_idx, answer_idx]
example = InputExample(guid=guid, text_a=text, text_b=question, label="0", meta=meta,
idx=ex_idx, num_choices=len(candidates) + 1)
examples.append(example)
else:
# create just one example with *all* correct answers and *all* answer candidates
guid = f'{set_type}-p{idx}-q{question_idx}'
meta = {
'passage_idx': idx,
'question_idx': question_idx,
'candidates': entities,
'answers': answers
}
example = InputExample(guid=guid, text_a=text, text_b=question, label="1", meta=meta,
idx=question_idx, num_choices=len(entities))
examples.append(example)
question_indices = list(set(example.meta['question_idx'] for example in examples))
label_distribution = Counter(example.label for example in examples)
print_rank_0(
f"Returning {len(examples)} examples corresponding to {len(question_indices)} questions with label "
f"distribution {list(label_distribution.items())}")
return examples
class MnliProcessor(DataProcessor):
"""Processor for the MultiNLI data set (GLUE version)."""
def get_train_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "train.tsv"), "train")
def get_dev_examples(self, data_dir, for_train=False):
return self._create_examples(os.path.join(data_dir, "dev_matched.tsv"), "dev_matched")
def get_test_examples(self, data_dir) -> List[InputExample]:
return self._create_examples(os.path.join(data_dir, "test_matched.tsv"), "test_matched")
def get_unlabeled_examples(self, data_dir) -> List[InputExample]:
return self.get_train_examples(data_dir)
def get_labels(self):
return ["contradiction", "entailment", "neutral"]
@staticmethod
def _create_examples(path: str, set_type: str) -> List[InputExample]:
examples = []
df = read_tsv(path)
for idx, row in df.iterrows():
guid = f"{set_type}-{idx}"
text_a = punctuation_standardization(row['sentence1'])
text_b = punctuation_standardization(row['sentence2'])
label = row.get('gold_label', None)
example = InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)
examples.append(example)
return examples
class CLUEProcessor(DataProcessor):
def get_train_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "train.json"), "train")
def get_dev_examples(self, data_dir, for_train=False):
return self._create_examples(os.path.join(data_dir, "dev.json"), "dev")
def get_test_examples(self, data_dir) -> List[InputExample]:
return self._create_examples(os.path.join(data_dir, "test.json"), "test")
def output_prediction(self, predictions, examples, output_file):
indices = list(range(len(predictions)))
indices.sort(key=lambda x: examples[x].idx)
with open(output_file, "w") as output:
for idx in indices:
prediction = self.get_labels()[predictions[idx]]
data = {"idx": examples[idx].idx, "label": prediction}
output.write(json.dumps(data) + "\n")
class TNewsProcessor(CLUEProcessor):
"""Processor for the TNews data set (CLUE version)."""
def get_labels(self):
return ["100", "101", "102", "103", "104", "106", "107", "108", "109", "110", "112", "113", "114", "115", "116"]
@staticmethod
def _create_examples(path: str, set_type: str) -> List[InputExample]:
examples = []
with open(path) as file:
for idx, line in enumerate(file):
guid = f"{set_type}-{idx}"
data = json.loads(line)
text_a = data["sentence"]
text_b = data['keywords']
label = data.get('label', None)
example = InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label, idx=idx)
examples.append(example)
return examples
class AFQMCProcessor(CLUEProcessor):
"""Processor for the AFQMC data set (CLUE version)."""
def get_labels(self):
return ["0", "1"]
@staticmethod
def _create_examples(path: str, set_type: str) -> List[InputExample]:
examples = []
with open(path) as file:
for idx, line in enumerate(file):
guid = f"{set_type}-{idx}"
data = json.loads(line)
text_a = data["sentence1"]
text_b = data['sentence2']
label = data.get('label', None)
example = InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label, idx=idx)
examples.append(example)
return examples
class MnliMismatchedProcessor(MnliProcessor):
"""Processor for the MultiNLI mismatched data set (GLUE version)."""
def get_dev_examples(self, data_dir, for_train=False):
return self._create_examples(os.path.join(data_dir, "dev_mismatched.tsv"), "dev_mismatched")
def get_test_examples(self, data_dir) -> List[InputExample]:
return self._create_examples(os.path.join(data_dir, "test_mismatched.tsv"), "test_mismatched")
class AgnewsProcessor(DataProcessor):
"""Processor for the AG news data set."""
def get_train_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "train.csv"), "train")
def get_dev_examples(self, data_dir, for_train=False):