diff --git a/docs/how_to_guide/plot_03_glm_pytree.py b/docs/how_to_guide/plot_03_glm_pytree.py index 2d36db3b..02181d32 100644 --- a/docs/how_to_guide/plot_03_glm_pytree.py +++ b/docs/how_to_guide/plot_03_glm_pytree.py @@ -128,7 +128,7 @@ # # First, let's get our dataset and do some initial exploration of it. To do so, # we'll use pynapple to [stream -# data](https://pynapple-org.github.io/pynapple/generated/examples/tutorial_pynapple_dandi/) +# data](https://pynapple.org/examples/tutorial_pynapple_dandi.html) # from the DANDI archive. # # !!! attention diff --git a/docs/tutorials/plot_01_current_injection.py b/docs/tutorials/plot_01_current_injection.py index 8eb83dbe..0e54ffeb 100644 --- a/docs/tutorials/plot_01_current_injection.py +++ b/docs/tutorials/plot_01_current_injection.py @@ -77,7 +77,7 @@ # !!! tip # # Pynapple can stream any NWB-formatted dataset! See [their -# documentation](https://pynapple-org.github.io/pynapple/generated/examples/tutorial_pynapple_dandi/) +# documentation](https://pynapple.org/examples/tutorial_pynapple_dandi.html) # for more details, and see the [DANDI Archive](https://dandiarchive.org/) # for a repository of compliant datasets. # @@ -135,7 +135,7 @@ # %% # # `trial_interval_set` is a dictionary with strings for keys and -# [`IntervalSets`](https://pynapple-org.github.io/pynapple/reference/core/interval_set/) +# [`IntervalSets`](https://pynapple.org/generated/pynapple.core.interval_set.IntervalSet.html) # for values. Each key defines the stimulus protocol, with the value defining # the beginning and end of that stimulation protocol. @@ -161,7 +161,7 @@ # %% # # `current` is a `Tsd` -# ([TimeSeriesData](https://pynapple-org.github.io/pynapple/reference/core/time_series/)) +# ([TimeSeriesData](https://pynapple.org/generated/pynapple.core.time_series.Tsd.html)) # object with 2 columns. Like all `Tsd` objects, the first column contains the # time index and the second column contains the data; in this case, the current # in Ampere (A). @@ -183,7 +183,7 @@ # Notice that the timestamps have changed and our shape is much smaller. # # Finally, let's examine the spike times. `spikes` is a -# [`TsGroup`](https://pynapple-org.github.io/pynapple/reference/core/ts_group/), +# [`TsGroup`](https://pynapple.org/generated/pynapple.core.ts_group.TsGroup.html#pynapple.core.ts_group.TsGroup), # a dictionary-like object that holds multiple `Ts` (timeseries) objects with # potentially different time indices: @@ -292,7 +292,7 @@ # %% # -# Note that firing_rate is a [`TsdFrame`](https://pynapple-org.github.io/pynapple/reference/core/time_series/)! +# Note that firing_rate is a [`TsdFrame`](https://pynapple.org/generated/pynapple.core.time_series.TsdFrame.html)! # print(type(firing_rate)) @@ -341,7 +341,7 @@ # firing rate within those bins: # # !!! note "Tuning curve in `pynapple`" -# [`compute_1d_tuning_curves`](https://pynapple-org.github.io/pynapple/reference/process/tuning_curves/#pynapple.process.tuning_curves.compute_1d_tuning_curves) : compute the firing rate as a function of a 1-dimensional feature. +# [`compute_1d_tuning_curves`](https://pynapple.org/generated/pynapple.process.tuning_curves.html#pynapple.process.tuning_curves.compute_1d_tuning_curves) : compute the firing rate as a function of a 1-dimensional feature. tuning_curve = nap.compute_1d_tuning_curves(spikes, current, nb_bins=15) tuning_curve @@ -402,7 +402,7 @@ # First, we require that our predictors and our spike counts have the same # number of time bins. We can achieve this by down-sampling our current to the # spike counts to the proper resolution using the -# [`bin_average`](https://pynapple-org.github.io/pynapple/reference/core/time_series/#pynapple.core.time_series.BaseTsd.bin_average) +# [`bin_average`](https://pynapple.org/generated/pynapple.core.time_series.Tsd.bin_average.html#pynapple.core.time_series.Tsd.bin_average) # method from pynapple: binned_current = current.bin_average(bin_size)