-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathlabels.py
97 lines (83 loc) · 2.94 KB
/
labels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import os
import json
import config
from textblob import TextBlob
from textblob.classifiers import NaiveBayesClassifier
class InputLabeler(object):
LABELS_DATA = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'labels_data.json')
def __init__(self):
with open(self.LABELS_DATA, 'r') as fp:
self.c = NaiveBayesClassifier(fp, format="json")
with open(self.LABELS_DATA, 'r') as fp:
self.labels_json = {}
for i in json.load(fp):
self.labels_json[i['text']] = i['label']
def get_num_labels(self):
return(len(self.get_labels()))
def get_labels(self):
labels = self.labels_json.values()
labels.sort()
return(set(labels))
def get_label(self, text):
text = text.lower()
# self.save_placeholder(text)
prob_dist = self.c.prob_classify(text)
label = prob_dist.max()
prob = round(prob_dist.prob(label), 2)
if prob > 0.7:
return(label)
else:
return(None)
def save_placeholder(self, text):
try:
self.labels_json[text]
except KeyError:
self.labels_json[text] = 'unknown'
with open(self.LABELS_DATA, 'w') as fp:
json.dump([{'text': k, 'label': v} for k,v in self.labels_json.items()], fp, indent=4)
def get_payload_for_label(label):
if label == 'email':
return(config.EMAIL_INPUT)
elif label == 'mobile':
return(config.MOBILE_INPUT)
elif label == 'zipcode':
return(config.ZIPCODE_INPUT)
elif label == 'address':
return(config.ADDRESS_INPUT)
elif label == 'text':
return(config.TEXT_INPUT)
elif label == 'date':
return(config.DATE_INPUT)
elif label == 'password':
return(config.PASSWORD_INPUT)
return(None)
class HelpLabeler(object):
HELP_DATA = 'help_data.json'
def __init__(self):
with open(self.HELP_DATA, 'r') as fp:
self.c = NaiveBayesClassifier(fp, format="json")
with open(self.HELP_DATA, 'r') as fp:
self.help_json = {}
for i in json.load(fp):
self.help_json[i['text']] = i['label']
def get_label(self, text, lower_placeholders=[]):
text = text.lower()
self.save_help(text)
prob_dist = self.c.prob_classify(text)
label = prob_dist.max()
prob = round(prob_dist.prob(label), 2)
if prob > 0.7:
return(label)
else:
return(None)
def save_help(self, lower_text):
try:
self.help_json[lower_text]
except KeyError:
self.help_json[lower_text] = 'unknown'
with open(self.HELP_DATA, 'w') as fp:
json.dump([{'text': k, 'label': v} for k, v in self.help_json.items()], fp, indent=4)
if __name__ == "__main__":
i_labeler = InputLabeler()
for i in ["re-enter password"]:
print("%s: %s" % (i, i_labeler.get_label(i)))