forked from niladridutt/Diffusion-3D-Features
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrender.py
70 lines (66 loc) · 3.12 KB
/
render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from pytorch3d.renderer.cameras import look_at_view_transform, PerspectiveCameras
from pytorch3d.renderer.mesh.rasterizer import RasterizationSettings, MeshRasterizer
from pytorch3d.renderer.mesh.shader import HardPhongShader
from pytorch3d.renderer import MeshRenderer
from pytorch3d.renderer.lighting import PointLights
from normal_shading import HardPhongNormalShader
import torch
import math
import time
@torch.no_grad()
def run_rendering(device, mesh, mesh_vertices, num_views, H, W, add_angle_azi=0, add_angle_ele=0, use_normal_map=False):
bbox = mesh.get_bounding_boxes()
bbox_min = bbox.min(dim=-1).values[0]
bbox_max = bbox.max(dim=-1).values[0]
bb_diff = bbox_max - bbox_min
bbox_center = (bbox_min + bbox_max) / 2.0
scaling_factor = 0.65
distance = torch.sqrt((bb_diff * bb_diff).sum())
distance *= scaling_factor
steps = int(math.sqrt(num_views))
end = 360 - 360/steps
elevation = torch.linspace(start = 0 , end = end , steps = steps).repeat(steps) + add_angle_ele
azimuth = torch.linspace(start = 0 , end = end , steps = steps)
azimuth = torch.repeat_interleave(azimuth, steps) + add_angle_azi
bbox_center = bbox_center.unsqueeze(0)
rotation, translation = look_at_view_transform(
dist=distance, azim=azimuth, elev=elevation, device=device, at=bbox_center
)
camera = PerspectiveCameras(R=rotation, T=translation, device=device)
rasterization_settings = RasterizationSettings(
image_size=(H, W), blur_radius=0.0, faces_per_pixel=1, bin_size=0
)
rasterizer = MeshRasterizer(cameras=camera, raster_settings=rasterization_settings)
camera_centre = camera.get_camera_center()
lights = PointLights(
diffuse_color=((0.4, 0.4, 0.5),),
ambient_color=((0.6, 0.6, 0.6),),
specular_color=((0.01, 0.01, 0.01),),
location=camera_centre,
device=device,
)
shader = HardPhongShader(device=device, cameras=camera, lights=lights)
batch_renderer = MeshRenderer(rasterizer=rasterizer, shader=shader)
batch_mesh = mesh.extend(num_views)
normal_batched_renderings = None
batched_renderings = batch_renderer(batch_mesh)
if use_normal_map:
normal_shader = HardPhongNormalShader(device=device, cameras=camera, lights=lights)
normal_batch_renderer = MeshRenderer(rasterizer=rasterizer, shader=normal_shader)
normal_batched_renderings = normal_batch_renderer(batch_mesh)
fragments = rasterizer(batch_mesh)
depth = fragments.zbuf
return batched_renderings, normal_batched_renderings, camera, depth
def batch_render(device, mesh, mesh_vertices, num_views, H, W, use_normal_map=False):
trials = 0
add_angle_azi = 0
add_angle_ele = 0
while trials < 5:
try:
return run_rendering(device, mesh, mesh_vertices, num_views, H, W, add_angle_azi=add_angle_azi, add_angle_ele=add_angle_ele, use_normal_map=use_normal_map)
except torch.linalg.LinAlgError as e:
trials += 1
print("lin alg exception at rendering, retrying ", trials)
add_angle_azi = torch.randn(1)
add_angle_ele = torch.randn(1)
continue