forked from niladridutt/Diffusion-3D-Features
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiffusion.py
162 lines (141 loc) · 5.13 KB
/
diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import torch
from PIL import Image
import numpy as np
from diffusers import ControlNetModel
from unet_2d_condition import UNet2DConditionModel
from pipeline_controlnet_img2img import StableDiffusionControlNetImg2ImgPipeline
from diffusers import DDIMScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import cv2
from torchvision import transforms
DIFFUSION_MODEL_ID = "runwayml/stable-diffusion-v1-5"
ckpt = "diffusion_pytorch_model.fp16.safetensors"
repo = "runwayml/stable-diffusion-v1-5"
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
class CannyDetector:
def __call__(self, img, low_threshold, high_threshold):
return cv2.Canny(img, low_threshold, high_threshold)
def rgb2canny(img):
input_image = np.asarray(img)
preprocessor = CannyDetector()
low_threshold = 100
high_threshold = 200
detected_map = preprocessor(input_image, low_threshold, high_threshold)
detected_map = HWC3(detected_map)
return detected_map
def sketch(img):
gray_image = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
inverted_gray_image = 255 - gray_image
blurred_image = cv2.GaussianBlur(inverted_gray_image, (21, 21), 0)
inverted_blurred_image = 255 - blurred_image
pencil_sketch_image = cv2.divide(gray_image, inverted_blurred_image, scale=256.0)
inverted_pencil_sketch_image = 255 - pencil_sketch_image
rgb = cv2.cvtColor(inverted_pencil_sketch_image, cv2.COLOR_GRAY2RGB) * 10
return rgb
def rgb2normalmap(normal_map):
normal_map = normal_map[:,:,0,:3].numpy()
min_value = np.min(normal_map)
max_value = np.max(normal_map)
normalized_normal_map = np.where(normal_map != 0, (normal_map - min_value) / (max_value - min_value), 0)
normal_map_image = (normalized_normal_map * 255).astype(np.uint8)
detected_map = HWC3(normal_map_image)
return detected_map
def init_pipe(device):
controlnet = [
ControlNetModel.from_pretrained(
"lllyasviel/control_v11f1p_sd15_depth",
torch_dtype=torch.float16,
),
# ControlNetModel.from_pretrained(
# "lllyasviel/control_v11p_sd15_canny",
# torch_dtype=torch.float16,
# ),
ControlNetModel.from_pretrained(
"lllyasviel/control_v11p_sd15_normalbae",
torch_dtype=torch.float16,
),
]
unet = UNet2DConditionModel.from_config(DIFFUSION_MODEL_ID, subfolder="unet").to(device, torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo_id=repo, subfolder="unet", filename=ckpt)))
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
DIFFUSION_MODEL_ID,
unet=unet,
controlnet=controlnet,
torch_dtype=torch.float16,
safety_checker=None,
)
pipe.set_progress_bar_config(disable=True)
pipe = pipe.to(device)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
# pipe.enable_xformers_memory_efficient_attention()
return pipe
transform = transforms.ToPILImage()
def process_depth_map(depth):
max_depth = depth.max()
indices = depth == -1
depth = max_depth - depth
depth[indices] = 0
max_depth = depth.max()
depth = depth / max_depth
depth = transform(depth)
return depth
def run_diffusion(
pipe,
input_image,
depth_map,
prompt,
normal_map_input=None,
use_latent=False,
num_images_per_prompt=1,
return_image=False
):
depth_map = process_depth_map(depth_map)
# canny = Image.fromarray(np.uint8(rgb2canny(input_image)))
control_image = [depth_map]
if normal_map_input is not None:
normal_map = Image.fromarray(rgb2normalmap(normal_map_input))
control_image.append(normal_map)
generator = torch.manual_seed(60)
pos_prompt = f"{prompt},best quality,highly detailed,photorealistic,photo"
negative_prompt = "lowres,low quality,monochrome,watermark"
output_type = "pil"
if use_latent:
output_type = "latent"
output = pipe(
pos_prompt,
negative_prompt=negative_prompt,
num_inference_steps=30,
image=Image.fromarray(input_image),
control_image=control_image,
num_images_per_prompt=num_images_per_prompt,
guidance_scale=7,
eta=1,
output_type=output_type,
return_image=return_image
# generator=generator,
).images
return output
def add_texture_to_render(
pipe, input_image, depth_map, prompt, normal_map_input=None, use_latent=False, num_images_per_prompt=1, return_image=False
):
return run_diffusion(
pipe, input_image, depth_map, prompt, normal_map_input, use_latent=use_latent, num_images_per_prompt=num_images_per_prompt,return_image=return_image
)