Skip to content

Latest commit

 

History

History
96 lines (71 loc) · 3.74 KB

README.md

File metadata and controls

96 lines (71 loc) · 3.74 KB

快速排序

快速排序(Quick Sort),是冒泡排序的改进版,之所以“快速”,是因为使用了分治法。它也属于交换排序,通过元素之间的位置交换来达到排序的目的。

基本思想

在序列中随机挑选一个元素作基准,将小于基准的元素放在基准之前,大于基准的元素放在基准之后,再分别对小数区与大数区进行排序。

一趟快速排序的具体做法是:

  1. 设两个指针 i 和 j,分别指向序列的头部和尾部;
  2. 先从 j 所指的位置向前搜索,找到第一个比基准小的值,把它与基准交换位置;
  3. 再从 i 所指的位置向后搜索,找到第一个比基准大的值,把它与基准交换位置;
  4. 重复 2、3 两步,直到 i = j。

仔细研究一下上述算法我们会发现,在排序过程中,对基准的移动其实是多余的,因为只有一趟排序结束时,也就是 i = j 的位置才是基准的最终位置。

由此可以优化一下算法:

  1. 设两个指针 i 和 j,分别指向序列的头部和尾部;
  2. 先从 j 所指的位置向前搜索,找到第一个比基准小的数值后停下来,再从 i 所指的位置向后搜索,找到第一个比基准大的数值后停下来,把 i 和 j 指向的两个值交换位置;
  3. 重复步骤2,直到 i = j,最后将相遇点指向的值与基准交换位置。

动图演示

代码实现

C语言

这里取序列的第一个元素为基准。

/* 选取序列的第一个元素作为基准 */
int select_pivot(int arr[], int low) {
    return arr[low];
}

void quick_sort(int arr[], int low, int high) {
    int i, j, pivot;
    if (low >= high) return;
    pivot = select_pivot(arr, low);
    i = low;
    j = high;
    while (i != j) {
        while (arr[j] >= pivot && i < j) j--;
        while (arr[i] <= pivot && i < j) i++;
        if (i < j) swap(arr, i, j);
    }
    arr[low] = arr[i];
    arr[i] = pivot;
    quick_sort(arr, low, i - 1);
    quick_sort(arr, i + 1, high);
}

算法分析

快速排序是不稳定排序,它的平均时间复杂度为 O(nlogn),平均空间复杂度为 O(logn)。

快速排序中,基准的选取非常重要,它将影响排序的效率。举个例子,假如序列本身顺序随机,快速排序是所有同数量级时间复杂度的排序算法中平均性能最好的,但如果序列本身已经有序或基本有序,直接选取固定位置,例如第一个元素作为基准,会使快速排序就会沦为冒泡排序,时间复杂度为 O(n^2)。为了避免发生这种情况,引入下面两种获取基准的方法:

随机选取

就是选取序列中的任意一个数为基准的值。

/* 随机选择基准的位置,区间在 low 和 high 之间 */
int select_pivot_random(int arr[], int low, int high) {
    srand((unsigned)time(NULL));
    int pivot = rand()%(high - low) + low;
    swap(arr, pivot, low);
    
    return arr[low];
}

三者取中

就是取起始位置、中间位置、末尾位置指向的元素,对这三个元素排序后取中间数作为基准。

/* 取起始位置、中间位置、末尾位置指向的元素三者的中间值作为基准 */
int select_pivot_median_of_three(int arr[], int low, int high) {
    // 计算数组中间的元素的下标
    int mid = low + ((high - low) >> 1);
    // 排序,使 arr[mid] <= arr[low] <= arr[high]
    if (arr[mid] > arr[high]) swap(arr, mid, high);
    if (arr[low] > arr[high]) swap(arr, low, high);
    if (arr[mid] > arr[low]) swap(arr, low, mid);
    // 使用 low 位置的元素作为基准
    return arr[low];
}

经验证明,三者取中的规则可以大大改善快速排序在最坏情况下的性能。