堆排序(Heap Sort)是指利用堆这种数据结构所设计的一种排序算法。堆的特点:
- 一颗完全二叉树(也就是会所生成节点的顺序是:从上往下、从左往右)
- 每一个节点必须满足父节点的值不大于/不小于子节点的值
实现堆排序需要解决两个问题:
-
如何将一个无序序列构建成堆?
-
如何在输出堆顶元素后,调整剩余元素成为一个新的堆?
以升序为例,算法实现的思路为:
- 建立一个 build_heap 函数,将数组 tree[0,...n-1] 建立成堆,n 表示数组长度。函数里需要维护的是所有节点的父节点,最后一个子节点下标为 n-1,那么它对应的父节点下标就是(n-1-1)/2。
- 构建完一次堆后,最大元素就会被存放在根节点 tree[0]。将 tree[0] 与最后一个元素交换,每一轮通过这种不断将最大元素后移的方式,来实现排序。
- 而交换后新的根节点可能不满足堆的特点了,因此需要一个调整函数 heapify 来对剩余的数组元素进行最大堆性质的维护。如果 tree[i] 表示其中的某个节点,那么 tree[2*i+1] 是左孩子,tree[2*i+2] 是右孩子,选出三者中的最大元素的下标,存放于 max 值中,若 max 不等于 i,则将最大元素交换到 i 下标的位置。但是,此时以 tree[max] 为根节点的子树可能不满足堆的性质,需要递归调用自身。
void heapify(int tree[], int n, int i) {
// n 表示序列长度,i 表示父节点下标
if (i >= n) return;
// 左侧子节点下标
int left = 2 * i + 1;
// 右侧子节点下标
int right = 2 * i + 2;
int max = i;
if (left < n && tree[left] > tree[max]) max = left;
if (right < n && tree[right] > tree[max]) max = right;
if (max != i) {
swap(tree, max, i);
heapify(tree, n, max);
}
}
void build_heap(int tree[], int n) {
// 树最后一个节点的下标
int last_node = n - 1;
// 最后一个节点对应的父节点下标
int parent = (last_node - 1) / 2;
int i;
for (i = parent; i >= 0; i--) {
heapify(tree, n, i);
}
}
void heap_sort(int tree[], int n) {
build_heap(tree, n);
int i;
for (i = n - 1; i >= 0; i--) {
// 将堆顶元素与最后一个元素交换
swap(tree, i, 0);
// 调整成大顶堆
heapify(tree, i, 0);
}
}
堆排序是不稳定排序,适合数据量较大的序列,它的平均时间复杂度为 Ο(nlogn),空间复杂度为 O(1)。 此外,堆排序仅需一个记录大小供交换用的辅助存储空间。