diff --git a/FIAT/expansions.py b/FIAT/expansions.py index 7afb82781..675b10869 100644 --- a/FIAT/expansions.py +++ b/FIAT/expansions.py @@ -459,26 +459,15 @@ def eta_cube(xi): return eta1, eta2, eta3 -from operator import mul -from functools import reduce from math import prod def chain_rule(eta, dphi_deta): dim = len(eta) - - dphi_dxi = list(map(sympy.Symbol, ("fx", "fy", "fz")[:dim])) - for i in range(dim): - offdiag = [prod((1. - eta[k])*0.5 for k in range(j+1, dim) if k != i) * (1. + eta[j])*0.5 for j in range(i)] - dphi_dxi[i] += sum(reduce(mul, dphi_dxi[:i], offdiag)) - dphi_dxi[i] /= prod((1. - eta[k])*0.5 for k in range(i+1, dim)) - print(dphi_dxi) - - - dphi_dxi = [dphi_deta[alpha] for alpha in sorted(reversed(dphi_deta)) if sum(alpha) == 1] + dphi_dxi = [dphi_deta[alpha] for alpha in reversed(sorted(dphi_deta)) if sum(alpha) == 1] for i in range(dim): - offdiag = [prod((1. - eta[k])*0.5 for k in range(j+1, dim) if k != i) * (1. + eta[j])*0.5 for j in range(i)] - dphi_dxi[i] += sum(reduce(mul, dphi_dxi[:i], offdiag)) + for j in range(i): + dphi_dxi[i] += dphi_dxi[j] * (1. + eta[j])*0.5 * prod((1. - eta[k])*0.5 for k in range(j+1, dim) if k != i) dphi_dxi[i] /= prod((1. - eta[k])*0.5 for k in range(i+1, dim)) @@ -509,7 +498,7 @@ def dubiner_deriv_1d(order, dim, x): sd = (order + 1) * (order + 2) // 2 dphi = numpy.zeros((sd, x.size), dtype=x.dtype) xhat = (1. - x) * 0.5 - for j in range(order): + for j in range(order+1): n = order - j alpha = 2 * j + dim derivs = jacobi.eval_jacobi_deriv_batch(alpha, 0, n, x[:, None]) @@ -519,24 +508,23 @@ def dubiner_deriv_1d(order, dim, x): derivs += results * (-0.5*j) if j > 1: derivs *= xhat ** (j - 1) + indices = [flat_index(i, j) for i in range(n + 1)] dphi[indices, :] = derivs return dphi -def dubiner_2d(order, xi, alphas=None): - if alphas is None: - alphas = [(0,) * 2] +def dubiner_2d(order, xi): sd = (order + 1) * (order + 2) // 2 eta = eta_square(numpy.transpose(xi)) B = [dubiner_1d(order, k, eta_k) for k, eta_k in enumerate(eta)] - D = [None] * len(B) - if any(sum(alpha) > 0 for alpha in alphas): - D = [dubiner_deriv_1d(order, k, eta_k) for k, eta_k in enumerate(eta)] - + D = [dubiner_deriv_1d(order, k, eta_k) for k, eta_k in enumerate(eta)] def idx(p, q): return (p + q) * (p + q + 1) // 2 + q + dim = len(eta) + alphas = [(0,) * dim] + alphas.extend(tuple(row) for row in numpy.eye(dim, dtype=int)) tabulations = {} for alpha in alphas: T = [Bj if aj == 0 else Dj for aj, Bj, Dj in zip(alpha, B, D)] @@ -548,25 +536,21 @@ def idx(p, q): phi[idx(i, j)] = T[1][flat_index(j, i)] * Ti * scale tabulations[alpha] = phi - print(tabulations[(1,0)]) - if len([alpha for alpha in alphas if sum(alpha) == 1]) == len(eta): - chain_rule(eta, tabulations) - print(tabulations[(1,0)]) + chain_rule(eta, tabulations) return tabulations -def dubiner_3d(order, xi, alphas=None): - if alphas is None: - alphas = [(0,) * 3] +def dubiner_3d(order, xi): sd = (order + 1) * (order + 2) * (order + 3) // 6 eta = eta_cube(numpy.transpose(xi)) B = [dubiner_1d(order, k, x) for k, x in enumerate(eta)] - D = [None] * len(B) - if any(sum(alpha) > 0 for alpha in alphas): - D = [dubiner_deriv_1d(order, k, x) for k, x in enumerate(eta)] + D = [dubiner_deriv_1d(order, k, x) for k, x in enumerate(eta)] def idx(p, q, r): return (p + q + r)*(p + q + r + 1)*(p + q + r + 2)//6 + (q + r)*(q + r + 1)//2 + r + dim = len(eta) + alphas = [(0,) * dim] + alphas.extend(tuple(row) for row in numpy.eye(dim, dtype=int)) tabulations = {} for alpha in alphas: T = [Dj if aj else Bj for aj, Bj, Dj in zip(alpha, B, D)] @@ -580,9 +564,7 @@ def idx(p, q, r): phi[idx(i, j, k)] = T[2][flat_index(k, i + j)] * Tij * scale tabulations[alpha] = phi - gradients = [tabulations[alpha] for alpha in alphas if sum(alpha)] - if len(gradients) == len(eta): - chain_rule(eta, gradients) + chain_rule(eta, tabulations) return tabulations @@ -621,27 +603,21 @@ def symmetric_simplex(dim): if 1: X = [tuple(map(sympy.Symbol, ("x", "y", "z")[:dim]))] - print("Dubiner flat") - print(dubiner_1d(degree, 1, numpy.array(X[0][:1]))) - print(dubiner_deriv_1d(degree, 1, numpy.array(X[0][:1]))) - print("Affine mapping") print(A) print(b) - alphas = [(0,) * dim] - alphas.extend(tuple(row) for row in numpy.eye(dim, dtype=int)) simplify = lambda x: numpy.array(sympy.simplify(x)) Told = expansion_set.tabulate(degree, X) - Tnew = tabulate(degree, mapping(X), alphas=alphas) + Tnew = tabulate(degree, mapping(X)) print("New phi(X)") print(simplify(Tnew[(0,) * dim])) print("Old phi(X)") print(simplify(Told)) - for i, (alpha, Xi) in enumerate(zip(alphas[1:], X[0])): + for i, (alpha, Xi) in enumerate(zip(numpy.eye(dim, dtype=int), X[0])): print("New d/dX_%d phi" % i) - print(simplify(Tnew[alpha])) + print(simplify(Tnew[tuple(alpha)])) print("Old d/dX_%d phi" % i) Di = lambda f: [sympy.simplify(sympy.diff(f[0], Xi))] print(numpy.array(list(map(Di, Told))))