From d7f8f0415fe9d84b208ff81544fbe1065794d1da Mon Sep 17 00:00:00 2001 From: Pablo Brubeck Date: Wed, 8 Nov 2023 17:21:46 +0000 Subject: [PATCH] Assert that errors decrease exponentially --- test/unit/test_gauss_legendre.py | 13 +++++++------ test/unit/test_gauss_lobatto_legendre.py | 13 +++++++------ 2 files changed, 14 insertions(+), 12 deletions(-) diff --git a/test/unit/test_gauss_legendre.py b/test/unit/test_gauss_legendre.py index dc7a64481..3eb147eb2 100644 --- a/test/unit/test_gauss_legendre.py +++ b/test/unit/test_gauss_legendre.py @@ -57,8 +57,8 @@ def test_gl_basis_values(dim, degree): @pytest.mark.parametrize("dim, degree", [(1, 4), (2, 4), (3, 4)]) -def test_symmetry(dim, degree): - """ Ensure the dual basis has the right symmetry.""" +def test_edge_dofs(dim, degree): + """ Ensure edge DOFs are point evaluations at GL points.""" from FIAT import GaussLegendre, quadrature, expansions s = symmetric_simplex(dim) @@ -83,12 +83,12 @@ def test_symmetry(dim, degree): assert np.allclose(points[edge_dofs[entity]], np.array(list(map(transform, quadrature_points)))) -@pytest.mark.parametrize("dim, degree", [(1, 128), (2, 64), (3, 16)]) +@pytest.mark.parametrize("dim, degree", [(1, 128), (2, 32), (3, 16)]) def test_interpolation(dim, degree): from FIAT import GaussLegendre, quadrature from FIAT.polynomial_set import mis - a = (1. + 0.5) + a = 1. + 0.5 a = 0.5 * a**2 r2 = lambda x: 0.5 * np.linalg.norm(x, axis=-1)**2 f = lambda x: np.exp(a / (r2(x) - a)) @@ -107,7 +107,6 @@ def test_interpolation(dim, degree): i = next(j for j, aj in enumerate(alpha) if aj > 0) f_at_pts[alpha] = df_at_pts[i] - print() scaleL2 = 1 / np.sqrt(np.dot(weights, f(points)**2)) scaleH1 = 1 / np.sqrt(np.dot(weights, sum(f_at_pts[alpha]**2 for alpha in f_at_pts))) @@ -123,7 +122,9 @@ def test_interpolation(dim, degree): err2 = sum((f_at_pts[alpha] - np.dot(coefficients, tab[alpha])) ** 2 for alpha in tab) errorH1 = scaleH1 * np.sqrt(np.dot(weights, err2)) - print("dim = %d, degree = %2d, L2-error = %.4E, H1-error = %.4E" % (dim, k, errorL2, errorH1)) + + assert errorL2 < 2 * max(3*np.exp(-k), 1E-15) + assert errorH1 < 2 * max(3*np.exp(-k+1), 1E-13 if dim == 1 else 1E-11) k = min(k * 2, k + 16) diff --git a/test/unit/test_gauss_lobatto_legendre.py b/test/unit/test_gauss_lobatto_legendre.py index 932934963..0641d0975 100644 --- a/test/unit/test_gauss_lobatto_legendre.py +++ b/test/unit/test_gauss_lobatto_legendre.py @@ -57,8 +57,8 @@ def test_gll_basis_values(dim, degree): @pytest.mark.parametrize("dim, degree", [(1, 4), (2, 4), (3, 4)]) -def test_symmetry(dim, degree): - """ Ensure the dual basis has the right symmetry.""" +def test_edge_dofs(dim, degree): + """ Ensure edge DOFs are point evaluations at GL points.""" from FIAT import GaussLobattoLegendre, quadrature, expansions s = symmetric_simplex(dim) @@ -84,12 +84,12 @@ def test_symmetry(dim, degree): assert np.allclose(points[edge_dofs[entity]], np.array(list(map(transform, quadrature_points)))) -@pytest.mark.parametrize("dim, degree", [(1, 128), (2, 64), (3, 16)]) +@pytest.mark.parametrize("dim, degree", [(1, 128), (2, 32), (3, 16)]) def test_interpolation(dim, degree): from FIAT import GaussLobattoLegendre, quadrature from FIAT.polynomial_set import mis - a = (1. + 0.5) + a = 1. + 0.5 a = 0.5 * a**2 r2 = lambda x: 0.5 * np.linalg.norm(x, axis=-1)**2 f = lambda x: np.exp(a / (r2(x) - a)) @@ -108,7 +108,6 @@ def test_interpolation(dim, degree): i = next(j for j, aj in enumerate(alpha) if aj > 0) f_at_pts[alpha] = df_at_pts[i] - print() scaleL2 = 1 / np.sqrt(np.dot(weights, f(points)**2)) scaleH1 = 1 / np.sqrt(np.dot(weights, sum(f_at_pts[alpha]**2 for alpha in f_at_pts))) @@ -124,7 +123,9 @@ def test_interpolation(dim, degree): err2 = sum((f_at_pts[alpha] - np.dot(coefficients, tab[alpha])) ** 2 for alpha in tab) errorH1 = scaleH1 * np.sqrt(np.dot(weights, err2)) - print("dim = %d, degree = %2d, L2-error = %.4E, H1-error = %.4E" % (dim, k, errorL2, errorH1)) + + assert errorL2 < max(3*np.exp(-k), 1E-15) + assert errorH1 < max(3*np.exp(-k+1), 1E-13 if dim == 1 else 1E-11) k = min(k * 2, k + 16)