diff --git a/FIAT/hellan_herrmann_johnson.py b/FIAT/hellan_herrmann_johnson.py index 3deaa3b4f..030fba489 100644 --- a/FIAT/hellan_herrmann_johnson.py +++ b/FIAT/hellan_herrmann_johnson.py @@ -9,6 +9,7 @@ # # SPDX-License-Identifier: LGPL-3.0-or-later from FIAT import dual_set, finite_element, polynomial_set, expansions +from FIAT.check_format_variant import check_format_variant from FIAT.functional import (PointwiseInnerProductEvaluation, ComponentPointEvaluation, FrobeniusIntegralMoment) @@ -18,13 +19,15 @@ class HellanHerrmannJohnsonDual(dual_set.DualSet): - def __init__(self, ref_el, degree, variant): + def __init__(self, ref_el, degree, variant, qdegree): sd = ref_el.get_spatial_dimension() top = ref_el.get_topology() entity_ids = {dim: {i: [] for i in sorted(top[dim])} for dim in sorted(top)} nodes = [] + + # Face dofs if variant == "point": - # On each codim=1 facet, n^T u n is evaluated on a Pk lattice, where k = degree. + # n^T u n evaluated on a Pk lattice for entity in sorted(top[sd-1]): cur = len(nodes) normal = ref_el.compute_scaled_normal(entity) @@ -34,58 +37,55 @@ def __init__(self, ref_el, degree, variant): entity_ids[sd-1][entity].extend(range(cur, len(nodes))) elif variant == "integral": - # On each codim=1 facet, n^T u n is integrated against a basis for Pk, where k = degree. + # n^T u n integrated against a basis for Pk facet = ref_el.construct_subelement(sd-1) - Q = create_quadrature(facet, 2*degree) + Q = create_quadrature(facet, qdegree + degree) P = polynomial_set.ONPolynomialSet(facet, degree) - phis = P.tabulate(Q.get_points())[(0,)*(sd-1)] + Phis = P.tabulate(Q.get_points())[(0,)*(sd-1)] for entity in sorted(top[sd-1]): cur = len(nodes) Q_mapped = FacetQuadratureRule(ref_el, sd-1, entity, Q) detJ = Q_mapped.jacobian_determinant() n = ref_el.compute_scaled_normal(entity) comp = (n[:, None] * n[None, :]) / detJ - nodes.extend(FrobeniusIntegralMoment(ref_el, Q_mapped, - comp[:, :, None] * phi[None, None, :]) - for phi in phis) + phis = comp[None, :, :, None] * Phis[:, None, None, :] + nodes.extend(FrobeniusIntegralMoment(ref_el, Q_mapped, phi) for phi in phis) entity_ids[sd-1][entity].extend(range(cur, len(nodes))) - else: - raise ValueError(f"Invalid variant {variant}") + # Interior dofs cur = len(nodes) if variant == "point": if sd != 2: raise NotImplementedError("Pointwise dofs only implemented in 2D") - # On the interior, the independent components uij, i <= j, - # are evaluated at a Pk lattice, where k = degree - 1. + # independent components evaluated at a P_{k-1} lattice shp = (sd, sd) basis = [(i, j) for i in range(sd) for j in range(i, sd)] pts = ref_el.make_points(sd, 0, degree + sd) nodes.extend(ComponentPointEvaluation(ref_el, comp, shp, pt) for comp in basis for pt in pts) else: - # On the interior, u is integrated against a basis of nn bubbles - Q = create_quadrature(ref_el, 2*degree) + # u integrated against a P_k basis of nn bubbles + Q = create_quadrature(ref_el, qdegree + degree) P = polynomial_set.ONPolynomialSet(ref_el, degree) Phis = P.tabulate(Q.get_points())[(0,)*sd] - sym = lambda A: 0.5*(A + A.T) + v = numpy.array(ref_el.get_vertices()) + sym_outer = lambda u, v: 0.5*(u[:, None]*v[None, :] + v[:, None]*u[None, :]) + tt = lambda i, j, k, l: sym_outer(v[i % (sd+1)] - v[j % (sd+1)], + v[k % (sd+1)] - v[l % (sd+1)]) - if sd == 3: - basis = [sym(numpy.outer(v[i] - v[j], v[m] - v[n])) - for i, j, m, n in [(0, 1, 2, 3), (0, 2, 1, 3)]] - for comp in basis: - phis = comp[None, :, :, None] * Phis[:, None, None, :] - nodes.extend(FrobeniusIntegralMoment(ref_el, Q, phi) for phi in phis) - elif sd > 3: - raise NotImplementedError(f"HHJ is not implemented in {sd} dimensions") + basis = [tt(i, i+1, i+2, i+3) for i in range((sd-2)*(sd-1))] + for comp in basis: + phis = comp[None, :, :, None] * Phis[:, None, None, :] + nodes.extend(FrobeniusIntegralMoment(ref_el, Q, phi) for phi in phis) - if degree > 0: - dimPkm1 = expansions.polynomial_dimension(ref_el, degree-1) - x = ref_el.compute_barycentric_coordinates(Q.get_points()) + dimPkm1 = expansions.polynomial_dimension(ref_el, degree-1) + if dimPkm1 > 0: + x = numpy.transpose(ref_el.compute_barycentric_coordinates(Q.get_points())) for i in sorted(top[0]): - comp = sym(numpy.outer(v[(i+1) % (sd+1)] - v[i], v[(i-1) % (sd+1)] - v[i])) - phis = comp[None, :, :, None] * x[None, None, None, :, i] * Phis[:dimPkm1, None, None, :] + comp = tt(i, i+1, i+2, i) + phis = comp[None, :, :, None] * Phis[:dimPkm1, None, None, :] + phis = numpy.multiply(phis, x[i], out=phis) nodes.extend(FrobeniusIntegralMoment(ref_el, Q, phi) for phi in phis) entity_ids[sd][0].extend(range(cur, len(nodes))) @@ -95,15 +95,16 @@ def __init__(self, ref_el, degree, variant): class HellanHerrmannJohnson(finite_element.CiarletElement): """The definition of Hellan-Herrmann-Johnson element. - HHJ(r) is the space of symmetric-matrix-valued polynomials of degree r + HHJ(k) is the space of symmetric-matrix-valued polynomials of degree k or less with normal-normal continuity. """ - def __init__(self, ref_el, degree, variant=None): - assert degree >= 0, "Hellan-Herrmann-Johnson starts at degree 0!" - if variant is None: - variant = "integral" + def __init__(self, ref_el, degree=0, variant=None): + if degree < 0: + raise ValueError(f"{type(self).__name__} only defined for degree >= 0") + + variant, qdegree = check_format_variant(variant, degree) poly_set = polynomial_set.ONSymTensorPolynomialSet(ref_el, degree) - dual = HellanHerrmannJohnsonDual(ref_el, degree, variant) + dual = HellanHerrmannJohnsonDual(ref_el, degree, variant, qdegree) sd = ref_el.get_spatial_dimension() formdegree = (sd-1, sd-1) mapping = "double contravariant piola" diff --git a/FIAT/regge.py b/FIAT/regge.py index 87c68a1ad..1fc40f58b 100644 --- a/FIAT/regge.py +++ b/FIAT/regge.py @@ -9,13 +9,14 @@ # # SPDX-License-Identifier: LGPL-3.0-or-later from FIAT import dual_set, finite_element, polynomial_set +from FIAT.check_format_variant import check_format_variant from FIAT.functional import PointwiseInnerProductEvaluation, FrobeniusIntegralMoment from FIAT.quadrature import FacetQuadratureRule from FIAT.quadrature_schemes import create_quadrature class ReggeDual(dual_set.DualSet): - def __init__(self, ref_el, degree, variant): + def __init__(self, ref_el, degree, variant, qdegree): top = ref_el.get_topology() entity_ids = {dim: {i: [] for i in sorted(top[dim])} for dim in sorted(top)} nodes = [] @@ -39,7 +40,7 @@ def __init__(self, ref_el, degree, variant): if dim == 0 or k < 0: continue facet = ref_el.construct_subelement(dim) - Q = create_quadrature(facet, degree + k) + Q = create_quadrature(facet, qdegree + k) P = polynomial_set.ONPolynomialSet(facet, k) phis = P.tabulate(Q.get_points())[(0,)*dim] for entity in sorted(top[dim]): @@ -52,23 +53,22 @@ def __init__(self, ref_el, degree, variant): comp[:, :, None] * phi[None, None, :]) for phi in phis for comp in basis) entity_ids[dim][entity].extend(range(cur, len(nodes))) - else: - raise ValueError(f"Invalid variant {variant}") super().__init__(nodes, ref_el, entity_ids) class Regge(finite_element.CiarletElement): """The generalized Regge elements for symmetric-matrix-valued functions. - REG(r) is the space of symmetric-matrix-valued polynomials of degree r + REG(k) is the space of symmetric-matrix-valued polynomials of degree k or less with tangential-tangential continuity. """ - def __init__(self, ref_el, degree, variant=None): - assert degree >= 0, "Regge start at degree 0!" - if variant is None: - variant = "integral" + def __init__(self, ref_el, degree=0, variant=None): + if degree < 0: + raise ValueError(f"{type(self).__name__} only defined for degree >= 0") + + variant, qdegree = check_format_variant(variant, degree) poly_set = polynomial_set.ONSymTensorPolynomialSet(ref_el, degree) - dual = ReggeDual(ref_el, degree, variant) + dual = ReggeDual(ref_el, degree, variant, qdegree) formdegree = (1, 1) mapping = "double covariant piola" super().__init__(poly_set, dual, degree, formdegree, mapping=mapping)