Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Write basic unit tests for Trainer #181

Merged
merged 1 commit into from
Jan 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 32 additions & 0 deletions tests/training_utils/mock_config.toml
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
[models.mock_model]
train = true

[training]
duration = "100:epoch"
seed = 0
gpu_index = 0
batch_size = 4
gradient_accumulation = "4:step"
clip_grad_norm = 1.0
evaluation_interval = "5:epoch"
evaluation_seed = 1

[optimizer]
optimizer = "SGD"
learning_rate = 1
momentum = 0.9

[scheduler]
scheduler_type = "ConstantLR"
update_interval = "1:step"
warmup = "20:step"

[dropout]
dropout = 0.0

[checkpointing]
save_interval = "10:epoch"

[wandb]
mode = "disabled"
project = "mock_project"
185 changes: 185 additions & 0 deletions tests/training_utils/test_trainer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,185 @@
from dataclasses import dataclass
from functools import cached_property
from pathlib import Path
from warnings import warn

import pytest
import torch
from torch import Tensor, nn
from torch.utils.data import Dataset

from refiners.fluxion import layers as fl
from refiners.fluxion.utils import norm
from refiners.training_utils.config import BaseConfig, TimeUnit
from refiners.training_utils.trainer import (
Trainer,
TrainingClock,
count_learnable_parameters,
human_readable_number,
)


@dataclass
class MockBatch:
inputs: torch.Tensor
targets: torch.Tensor


class MockDataset(Dataset[MockBatch]):
def __len__(self):
return 20

def __getitem__(self, _: int) -> MockBatch:
return MockBatch(inputs=torch.randn(1, 10), targets=torch.randn(1, 10))

def collate_fn(self, batch: list[MockBatch]) -> MockBatch:
return MockBatch(
inputs=torch.cat([b.inputs for b in batch]),
targets=torch.cat([b.targets for b in batch]),
)


class MockConfig(BaseConfig):
pass


class MockModel(fl.Chain):
def __init__(self):
super().__init__(
fl.Linear(10, 10),
fl.Linear(10, 10),
fl.Linear(10, 10),
)


class MockTrainer(Trainer[MockConfig, MockBatch]):
step_counter: int = 0

@cached_property
def mock_model(self) -> MockModel:
return MockModel()

def load_dataset(self) -> Dataset[MockBatch]:
return MockDataset()

def load_models(self) -> dict[str, fl.Module]:
return {"mock_model": self.mock_model}

def compute_loss(self, batch: MockBatch) -> Tensor:
self.step_counter += 1
inputs, targets = batch.inputs.to(self.device), batch.targets.to(self.device)
outputs = self.mock_model(inputs)
return norm(outputs - targets)


@pytest.fixture
def mock_config(test_device: torch.device) -> MockConfig:
if not test_device.type == "cuda":
warn("only running on CUDA, skipping")
pytest.skip("Skipping test because test_device is not CUDA")
config = MockConfig.load_from_toml(Path(__file__).parent / "mock_config.toml")
config.training.gpu_index = test_device.index
return config


@pytest.fixture
def mock_trainer(mock_config: MockConfig) -> MockTrainer:
return MockTrainer(config=mock_config)


@pytest.fixture
def mock_model() -> fl.Chain:
return MockModel()


def test_count_learnable_parameters_with_params() -> None:
params = [
nn.Parameter(torch.randn(2, 2), requires_grad=True),
nn.Parameter(torch.randn(5), requires_grad=False),
nn.Parameter(torch.randn(3, 3), requires_grad=True),
]
assert count_learnable_parameters(params) == 13


def test_count_learnable_parameters_with_model(mock_model: fl.Chain) -> None:
assert count_learnable_parameters(mock_model.parameters()) == 330


def test_human_readable_number() -> None:
assert human_readable_number(123) == "123.0"
assert human_readable_number(1234) == "1.2K"
assert human_readable_number(1234567) == "1.2M"


@pytest.fixture
def training_clock() -> TrainingClock:
return TrainingClock(
dataset_length=100,
batch_size=10,
training_duration={"number": 5, "unit": TimeUnit.EPOCH},
gradient_accumulation={"number": 1, "unit": TimeUnit.EPOCH},
evaluation_interval={"number": 1, "unit": TimeUnit.EPOCH},
lr_scheduler_interval={"number": 1, "unit": TimeUnit.EPOCH},
checkpointing_save_interval={"number": 1, "unit": TimeUnit.EPOCH},
)


def test_time_unit_to_steps_conversion(training_clock: TrainingClock) -> None:
assert training_clock.convert_time_unit_to_steps(1, TimeUnit.EPOCH) == 10
assert training_clock.convert_time_unit_to_steps(2, TimeUnit.EPOCH) == 20
assert training_clock.convert_time_unit_to_steps(1, TimeUnit.STEP) == 1


def test_steps_to_time_unit_conversion(training_clock: TrainingClock) -> None:
assert training_clock.convert_steps_to_time_unit(10, TimeUnit.EPOCH) == 1
assert training_clock.convert_steps_to_time_unit(20, TimeUnit.EPOCH) == 2
assert training_clock.convert_steps_to_time_unit(1, TimeUnit.STEP) == 1


def test_clock_properties(training_clock: TrainingClock) -> None:
assert training_clock.num_batches_per_epoch == 10
assert training_clock.num_epochs == 5
assert training_clock.num_iterations == 5
assert training_clock.num_steps == 50


def test_timer_functionality(training_clock: TrainingClock) -> None:
training_clock.start_timer()
assert training_clock.start_time is not None
training_clock.stop_timer()
assert training_clock.end_time is not None
assert training_clock.time_elapsed >= 0


def test_state_based_properties(training_clock: TrainingClock) -> None:
training_clock.step = 5 # Halfway through the first epoch
assert not training_clock.is_evaluation_step # Assuming evaluation every epoch
assert not training_clock.is_checkpointing_step
training_clock.step = 10 # End of the first epoch
assert training_clock.is_evaluation_step
assert training_clock.is_checkpointing_step


def test_mock_trainer_initialization(mock_config: MockConfig, mock_trainer: MockTrainer) -> None:
assert mock_trainer.config == mock_config
assert isinstance(mock_trainer, MockTrainer)
assert mock_trainer.optimizer is not None
assert mock_trainer.lr_scheduler is not None


def test_training_cycle(mock_trainer: MockTrainer) -> None:
clock = mock_trainer.clock
config = mock_trainer.config

assert clock.num_step_per_iteration == config.training.gradient_accumulation["number"]
assert clock.num_batches_per_epoch == mock_trainer.dataset_length // config.training.batch_size

assert mock_trainer.step_counter == 0
assert mock_trainer.clock.epoch == 0

mock_trainer.train()

assert clock.epoch == config.training.duration["number"]
assert clock.step == config.training.duration["number"] * clock.num_batches_per_epoch

assert mock_trainer.step_counter == mock_trainer.clock.step