Skip to content

Commit

Permalink
add minimal unit tests for DINOv2
Browse files Browse the repository at this point in the history
To be completed with tests using image preprocessing, e.g. test cosine
similarity on a relevant pair of images
  • Loading branch information
deltheil committed Dec 16, 2023
1 parent 5ce9515 commit 9ab98ac
Show file tree
Hide file tree
Showing 3 changed files with 95 additions and 0 deletions.
3 changes: 3 additions & 0 deletions src/refiners/foundationals/dinov2/dinov2.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,9 @@

from refiners.foundationals.dinov2.vit import ViT

# TODO: add preprocessing logic like
# https://github.com/facebookresearch/dinov2/blob/2302b6b/dinov2/data/transforms.py#L77


class DINOv2_small(ViT):
def __init__(
Expand Down
1 change: 1 addition & 0 deletions src/refiners/foundationals/dinov2/vit.py
Original file line number Diff line number Diff line change
Expand Up @@ -269,6 +269,7 @@ def __init__(
),
dim=1,
),
# TODO: support https://github.com/facebookresearch/dinov2/blob/2302b6b/dinov2/models/vision_transformer.py#L179
PositionalEncoder(
sequence_length=num_patches**2 + 1,
embedding_dim=embedding_dim,
Expand Down
91 changes: 91 additions & 0 deletions tests/foundationals/dinov2/test_dinov2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
from pathlib import Path
from warnings import warn

import pytest
import torch
from transformers import AutoModel # type: ignore
from transformers.models.dinov2.modeling_dinov2 import Dinov2Model # type: ignore

from refiners.fluxion.utils import load_from_safetensors, manual_seed
from refiners.foundationals.dinov2 import DINOv2_base, DINOv2_large, DINOv2_small
from refiners.foundationals.dinov2.vit import ViT

# TODO: add DINOv2 with registers ("dinov2_vits14_reg", etc). At the time of writing, those are not yet supported in
# transformers (https://github.com/huggingface/transformers/issues/27379). Alternatively, it is also possible to use
# facebookresearch/dinov2 directly (https://github.com/finegrain-ai/refiners/pull/132).
FLAVORS = [
"dinov2_vits14",
"dinov2_vitb14",
"dinov2_vitl14",
]


@pytest.fixture(scope="module", params=FLAVORS)
def flavor(request: pytest.FixtureRequest) -> str:
return request.param


@pytest.fixture(scope="module")
def our_backbone(test_weights_path: Path, flavor: str, test_device: torch.device) -> ViT:
weights = test_weights_path / f"{flavor}_pretrain.safetensors"
if not weights.is_file():
warn(f"could not find weights at {weights}, skipping")
pytest.skip(allow_module_level=True)
match flavor:
case "dinov2_vits14":
backbone = DINOv2_small(device=test_device)
case "dinov2_vitb14":
backbone = DINOv2_base(device=test_device)
case "dinov2_vitl14":
backbone = DINOv2_large(device=test_device)
case _:
raise ValueError(f"Unexpected DINOv2 flavor: {flavor}")
tensors = load_from_safetensors(weights)
backbone.load_state_dict(tensors)
return backbone


@pytest.fixture(scope="module")
def dinov2_weights_path(test_weights_path: Path, flavor: str):
match flavor:
case "dinov2_vits14":
name = "dinov2-small"
case "dinov2_vitb14":
name = "dinov2-base"
case "dinov2_vitl14":
name = "dinov2-large"
case _:
raise ValueError(f"Unexpected DINOv2 flavor: {flavor}")
r = test_weights_path / "facebook" / name
if not r.is_dir():
warn(f"could not find DINOv2 weights at {r}, skipping")
pytest.skip(allow_module_level=True)
return r


@pytest.fixture(scope="module")
def ref_backbone(dinov2_weights_path: Path, test_device: torch.device) -> Dinov2Model:
backbone = AutoModel.from_pretrained(dinov2_weights_path) # type: ignore
assert isinstance(backbone, Dinov2Model)
return backbone.to(test_device) # type: ignore


def test_encoder(
ref_backbone: Dinov2Model,
our_backbone: ViT,
test_device: torch.device,
):
manual_seed(42)

# Position encoding interpolation [1] at runtime is not supported yet. So stick to the default image resolution
# e.g. using (224, 224) pixels as input would give a runtime error (sequence size mismatch)
# [1]: https://github.com/facebookresearch/dinov2/blob/2302b6b/dinov2/models/vision_transformer.py#L179
assert our_backbone.image_size == 518

x = torch.randn(1, 3, 518, 518).to(test_device)

with torch.no_grad():
ref_features = ref_backbone(x).last_hidden_state
our_features = our_backbone(x)

assert (our_features - ref_features).abs().max() < 1e-3

0 comments on commit 9ab98ac

Please sign in to comment.