forked from hMRI-group/hMRI-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtbx_scfg_hmri_imperf_spoil.m
187 lines (171 loc) · 7.92 KB
/
tbx_scfg_hmri_imperf_spoil.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
function imperf_spoil=tbx_scfg_hmri_imperf_spoil
%
% PURPOSE: Compute correction factors for imperfect spoiling based on the
% method described in (Preibisch & Deichmann, MRM, 2009).
%
% METHODS: Numerical simulations are performed with the Extended Phase
% Graph framework(code from https://github.com/mriphysics/EPG-X). Sequence
% parameters, a range of values for B1+ efficiency and T1, and global
% parameters T2 and diffusion coefficent T must be provided.
%
%_______________________________________________________________________
% Wellcome Centre for Human Neuroimaging
% Nadège Corbin - May 2020
% ======================================================================
% ---------------------------------------------------------------------
% outdir Output directory
% ---------------------------------------------------------------------
outdir = cfg_files;
outdir.tag = 'outdir';
outdir.name = 'Output directory';
outdir.help = {'Select a directory where a json file containing the correction parameters will be written to.'};
outdir.filter = 'dir';
outdir.ufilter = '.*';
outdir.num = [1 1];
% ---------------------------------------------------------------------
% Name of the protocol
% ---------------------------------------------------------------------
prot_name = cfg_entry;
prot_name.tag = 'prot_name';
prot_name.name = 'Protocol Name ';
prot_name.val = {'Unit_Test_Protocol'};
prot_name.strtype = 's';
prot_name.help = {['Specify the name of the protocol']};
% ---------------------------------------------------------------------
% T1 range [ms]
% ---------------------------------------------------------------------
T1range = cfg_entry;
T1range.tag = 'T1range_ms';
T1range.name = 'T1 range (ms)';
T1range.val = {[500:100:2000]};
T1range.strtype = 'e';
T1range.num = [1 Inf];
T1range.help = {['Specify the range of T1 times over which the ',...
'corrections factors will be computed. A linear fitting ',...
'T1 = A + B*T1app will be performed to estimate A and B for each B1+ '...
'efficiency.']};
% ---------------------------------------------------------------------
% B1+ efficiency range [%]
% ---------------------------------------------------------------------
B1range = cfg_entry;
B1range.tag = 'B1range_percent';
B1range.name = 'Expected B1+ range (%)';
B1range.val = {[70 : 5 : 130]};
B1range.strtype = 'e';
B1range.num = [1 Inf];
B1range.help = {['Specify the range of transmit field efficiency (B1+) over which the ',...
'corrections factors will be computed. After the linear fitting ',...
'T1 = A + B*T1app , a polynomial fitting will be perfomed to estimate ',...
'A and B such that: A=P(B1) and B=P(B1) with P a 2nd degree polynom.']};
% ---------------------------------------------------------------------
% T2 [ms]
% ---------------------------------------------------------------------
T2 = cfg_entry;
T2.tag = 'T2range_ms';
T2.name = 'T2 range (ms)';
T2.val = {[70]};
T2.strtype = 'r';
T2.num = [1 Inf];
T2.help = {['Specify an estimate of the T2 time in ms, or an array of values']};
% ---------------------------------------------------------------------
% D [um^2/ms]
% ---------------------------------------------------------------------
D = cfg_entry;
D.tag = 'D_um2_per_ms';
D.name = 'D (um^2/ms)';
D.val = {[0.8]};
D.strtype = 'r';
D.num = [1 1];
D.help = {['Specify an estimate of the diffusion coeffcient (D) in um^2/ms']};
% ---------------------------------------------------------------------
% Readout gradient amplitude [ms]
% ---------------------------------------------------------------------
Gdur = cfg_entry;
Gdur.tag = 'Gdur_ms';
Gdur.name = 'Spoiler gradient duration (ms)';
Gdur.val = {[3.3876]};
Gdur.strtype = 'e';
Gdur.num = [1 Inf];
Gdur.help = {['Specify the duration (in ms) of the spoiler gradient ',...
'of the FLASH acquisitions. Note here a vector could be '...
'included to account for the full effect of the readout, e.g. multiple echoes ']};
% ---------------------------------------------------------------------
% Spoiler gradient amplitude [ms]
% ---------------------------------------------------------------------
Gamp = cfg_entry;
Gamp.tag = 'Gamp_mT_per_m';
Gamp.name = 'Spoiler gradient amplitude (mT/m)';
Gamp.val = {[26.00]};
Gamp.strtype = 'e';
Gamp.num = [1 Inf];
Gamp.help = {['Specify the amplitude (in mT/m) of the spoiling gradient ',...
'of the FLASH acquisitions ']};
% ---------------------------------------------------------------------
% TR [ms]
% ---------------------------------------------------------------------
TR = cfg_entry;
TR.tag = 'TR_ms';
TR.name = 'TR';
TR.val = {[25 25]};
TR.strtype = 'r';
TR.num = [1 2];
TR.help = {['Specify the TR (in ms) of the PD-weighted ',...
'and the T1-weighted FLASH acquisitions (in that order)']};
% ---------------------------------------------------------------------
% RF Spoiling increment [deg]
% ---------------------------------------------------------------------
Phi0 = cfg_entry;
Phi0.tag = 'Phi0_deg';
Phi0.name = 'RF spoiling increment';
Phi0.val = {[137]};
Phi0.strtype = 'w';
Phi0.num = [1 1];
Phi0.help = {['Specify the RF SPoiling increment (in deg) of the FLASH acquisitions']};
% ---------------------------------------------------------------------
% Flip angles [deg]
% ---------------------------------------------------------------------
FA = cfg_entry;
FA.tag = 'FA_deg';
FA.name = 'Flip angles';
FA.val = {[6 21]};
FA.strtype = 'e';
FA.num = [1 2];
FA.help = {['Specify the flip angles (in deg) of the PD-weighted ',...
'and the T1-weighted FLASH acquisitions (in that order)']};
% ---------------------------------------------------------------------
% All tissue parameters
% ---------------------------------------------------------------------
tissue_params = cfg_branch;
tissue_params.tag = 'tissue_params';
tissue_params.name = 'Tissue parameters';
tissue_params.help = {'Input all the tissue parameters.'};
tissue_params.val = {T1range T2 D};
% ---------------------------------------------------------------------
% All sequence parameters
% ---------------------------------------------------------------------
seq_params = cfg_branch;
seq_params.tag = 'seq_params';
seq_params.name = 'Sequence parameters';
seq_params.help = {'Input all the sequence parameters.'};
seq_params.val = {FA TR Phi0 B1range Gdur Gamp};
% ---------------------------------------------------------------------
% Approximation parameters
% ---------------------------------------------------------------------
small_angle_approx = cfg_menu;
small_angle_approx.tag = 'small_angle_approx';
small_angle_approx.name = 'Small angle approximation';
small_angle_approx.help = {'Should the small angle approximation be used to compute T1? This can lead to significant differences in the computed parameters.'};
small_angle_approx.labels = { 'yes', 'no' };
small_angle_approx.values = { true false };
small_angle_approx.val = { true };
% ---------------------------------------------------------------------
% Compute correction factors for imperfect spoiling
% ---------------------------------------------------------------------
imperf_spoil = cfg_exbranch;
imperf_spoil.tag = 'imperf_spoil';
imperf_spoil.name = 'Imperfect Spoiling Calc.';
imperf_spoil.val = { outdir prot_name seq_params tissue_params small_angle_approx };
imperf_spoil.help = {'Given input info about the sequence settings and expected tissue properties, ' ...
'this module computes coefficients required to correct for imperfect spoiling in the FLASH volumes ' ...
'using the method proposed by Preibisch & Deichmann, MRM 2009, 61(1):125'};
imperf_spoil.prog = @hmri_corr_imperf_spoil;