forked from hMRI-group/hMRI-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathhmri_proc_MPMsmooth.m
144 lines (129 loc) · 4.9 KB
/
hmri_proc_MPMsmooth.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
function fn_out = hmri_proc_MPMsmooth(fn_wMPM, fn_mwTC, fn_TPM, fwhm, l_TC, pth_out)
% Applying tissue specific smoothing, aka. weighted averaging, in order to
% limit partial volume effect.
% This works on multiple parametric and tissue class maps from a *single*
% subject.
%
% FORMAT
% fn_out = hmri_proc_MPMsmooth(fn_wMPM, fn_mwTC, fn_TPM, fwhm)
%
% INPUT
% - fn_wMPM : filenames (char array) of the warped MPM, i.e. the
% w*MT/R1/R2s/A.nii files
% - fn_mwTC : filenames (char array) of the modulated warped tissue
% classes, i.e. the mwc1/2*.nii files
% - fn_TPM : filenames (char array) of the a priori tissue probability
% maps to use, matching those in fn_mwTC
% - fwhm : width of smoothing kernel in mm [6 by def.]
% - l_TC : explicit list of tissue classes used [1:nTC by def.]
% - pth_out : output path [empty by default -> same as input maps]
%
% OUTPUT
% - fn_out : cell array (one cell per MPM) of filenames (char array) of
% the "smoothed tissue specific MPMs".
%
% REFERENCE
% Draganski et al, 2011, doi:10.1016/j.neuroimage.2011.01.052
%_______________________________________________________________________
% Copyright (C) 2017 Cyclotron Research Centre
% Written by C. Phillips.
% Cyclotron Research Centre, University of Liege, Belgium
% NOTES:
% this works for one subject at a time, i.e. in the classic case of 4 MPMs
% and GM/WM tissue classes take the
% + 4 warped quantitative maps (in fn_wMPM)
% + 2 modulated warped tissue class maps in fn_mwTC (e.g. mwc1*.nii and
% mwc2*.nii)
% + 2 TPMs matching the fn_mwTC
%
% In the VBQ toolbox, one typically considers GM/WM to produce fin-images,
% aka. fin_uni/dart_c1/2* images. The key word "uni"/"dart" come from
% either maps warped by unified segmentation only, or Dartel, respectively.
% On top of these 2, there was also a combined GM+WM fin-image created:
% fin_uni/dart_bb* images -> I am skipping this for the moment.
%
% If different tissue classes were used then the explicit list of tissue
% classes (l_TC) could come in handy to keep the numbering of resulting
% images in line with their tissue class index.
%
% In the _run function
% - the exact tissue class considered is defined by the index in the name
% of the fn_mwTC files. So if mwc1*.nii and mwc2*.nii are passed, then
% the 1st and 2nd tissue class are used from the TPM
% - Just pass the full name of the TPM, without subvolume index, the exact
% TC used is defined by the fn_mwTC
%
% FUTURE:
% With present computer having large amounts of RAM, we could do most of
% the image calculation direction by loading the nifti files directly. This
% would eschew the use of spm_imcalc (and its annoying messages...) and
% likely be a bit faster.
% Not sure how to perform the Gaussian smoothingn though. Probably some
% re-implementation could do the trick.
% Check input
if nargin<6, pth_out = []; end
if nargin<4, fwhm = 6; end
if nargin<3,
error('hMRI:smoothing','Provide 4 input, see help.');
end
% Count images and check
nMPM = size(fn_wMPM,1);
nTC = size(fn_mwTC,1);
nTPM = size(fn_TPM,1);
if nTC~=nTPM
error('hMRI:smoothing','Mismatched number of tissue classes.')
end
if nargin<5 || numel(l_TC)~=nTC
% Get list of TC indexes if not provided
l_TC = 1:nTC;
end
% Flags for image calculation
ic_flag = struct(...
'dtype', 16, ... % keep things in floats
'interp', -4); % 4th order spline interpolation
% Initialize output and loop over MPMs
fn_out = cell(nMPM,1);
for ii=1:nMPM
% ii^th MPM to be treated
fn_wMPM_ii = fn_wMPM(ii,:) ;
% Get the TC-weighted MPM -> p-images
p = cell(nTC,1);
for jj=1:nTC
% MPM weighted with its own GM/WM/lesion, and a priori>.05
tmp = char(fn_wMPM_ii, fn_mwTC(jj,:), fn_TPM(jj,:)); % i1, i2, i3
p_tmp = spm_imcalc( tmp, ...
spm_file(fn_wMPM_ii,'prefix',['p',num2str(l_TC(jj)),'_']), ...
'(i1.*i2).*(i3>0.05)',ic_flag);
p{jj} = p_tmp.fname;
end
% Smooth TC -> m-images
m = cell(nTC,1);
for jj=1:nTC
m{jj} = spm_file(fn_mwTC(jj,:),'prefix','s','number','');
spm_smooth(fn_mwTC(jj,:),m{jj},fwhm); % smooth mwc(jj)
end
% Smooth weighted MPM (p) -> n-images
n = cell(nTC,1);
for jj=1:nTC
n{jj} = spm_file(p{jj},'prefix','s');
spm_smooth(p{jj},n{jj},fwhm);
end
% calculate signal (n./m) + masking smoothed TC>.05
q = cell(nTC,1);
for jj=1:nTC
q{jj} = spm_file(p{jj},'prefix','wa');
if ~isempty(pth_out)
% update output path if provided
q{jj} = spm_file(q{jj},'path',pth_out);
end
spm_imcalc(char(n{jj},m{jj}), ... % i1, i2
q{jj}, ...
'(i1./i2).*(i2>0.05)',ic_flag);
end
fn_out{ii} = char(q); % saved as char array
fn_2delete = char(char(p),char(m),char(n));
for jj=1:size(fn_2delete,1)
delete(deblank(fn_2delete(jj,:)));
end
end
end