forked from hMRI-group/hMRI-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathhmri_calc_R2s.m
219 lines (188 loc) · 8.31 KB
/
hmri_calc_R2s.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
function [R2s,extrapolated]=hmri_calc_R2s(weighted_data,method)
% R2* estimation using an implementation of the ESTATICS
% model (Weiskopf2014). Can utilise weighted least squares (WLS) instead of
% the original ordinary least squares (OLS; Weiskopf2014) to account
% for the heteroscedasticity of log transformed data (Edwards2022).
%
% Input:
% array of structures (one per contrast) in the form:
% weighted(contrast).data (NvoxelsX x NvoxelsY x ... x Nechoes)
% weighted(contrast).TE (1 x Nechoes)
% -Voxels must correspond between the weightings (i.e. the images should
% have been resliced to the same space), but the sampled TEs may be
% different.
% -Nechoes must be at least 2 for each weighting.
% -Because log(0) is ill-defined, zero values in any voxel will result
% in NaN output for that voxel. To avoid potentially biasing the data,
% we do not modify the input in any way to avoid this, and leave it to
% the user to decide how to handle this case, e.g. by removing the
% corresponding voxels from the input data or replacing zeroes with a
% small positive number.
%
% method:
% string stating which log-linear estimation method to use.
% -Options are: 'OLS' (log-linear ordinary least squares estimate),
% 'WLS[N]' (log-linear weighted least squares estimate
% with '[N]' iterations, where '[N]' is 1, 2 ,
% or 3; uses OLS signal estimates for initial
% weights),
% 'NLLS_[METHOD]' (non-linear least squares estimate,
% where [METHOD] is the method to be
% used for the initial guess of the
% parameters, e.g. 'ols' or 'wls1'; note
% that while this is expected to be
% accurate, this method is very slow!)
% -The weights in the WLS case depend on the unknown true signal
% intensities. These weights can be iteratively updated using the
% estimated signal intensities. However the benefit of
% iteratively updating the weights has been found to be relatively
% small for typical MPM data, and so 'wls1' seems to be sufficient
% to improve R2* map quality over OLS (Edwards2022).
%
% Outputs:
% R2s (NvoxelsX x NvoxelsY x ...): the voxelwise-estimated
% common R2* of the weightings.
% extrapolated: cell array containing data extrapolated to TE=0 in the
% same order as the input (e.g. matching contrast order).
%
% Examples:
% OLS estimate of R2* from PD-weighted data array:
% R2s = hmri_calc_R2s(struct('data',PDw,'TE',PDwTE),'OLS');
%
% WLS estimate of R2* from PD-weighted data with 3 iterations:
% R2s = hmri_calc_R2s(struct('data',PDw,'TE',PDwTE),'WLS3');
%
% NLLS estimate of R2* from PD-weighted data using OLS for initial
% parameters:
% R2s = hmri_calc_R2s(struct('data',PDw,'TE',PDwTE),'NLLS_OLS');
%
% ESTATICS estimate of common R2* of PD, T1, and MT-weighted data,
% along with estimates of the extrapolation of the input data to TE=0:
% [R2s,extrapolated] = hmri_calc_R2s([struct('data',PDw,'TEs',PDwTE),...
% struct('data',T1w,'TE',T1wTE), struct('data',MTw,'TEs',MTwTE)],'OLS');
%
% WLS-ESTATICS estimate of common R2* of PD, T1, and MT-weighted data
% with 1 iteration:
% R2s = hmri_calc_R2s([struct('data',PDw,'TE',PDwTE),...
% struct('data',T1w,'TE',T1wTE), struct('data',MTw,'TE',MTwTE)],'WLS1');
%
% References:
% Weiskopf et al. Front. Neurosci. (2014), "Estimating the apparent
% transverse relaxation time (R2*) from images with different contrasts
% (ESTATICS) reduces motion artifacts",
% https://doi.org/10.3389/fnins.2014.00278
% Edwards et al. Proc. Int. Soc. Magn. Reson. Med. (2022), "Robust and
% efficient R2* estimation in human brain using log-linear weighted
% least squares"
assert(isstruct(weighted_data),'hmri:structError',['inputs must be structs; see help ' mfilename])
dims=size(weighted_data(1).data);
Nvoxels=prod(dims(1:end-1));
Nweighted=numel(weighted_data);
%% Build regression arrays
% Build design matrix
D=[];
for w=1:Nweighted
d=zeros(length(weighted_data(w).TE),Nweighted+1);
d(:,1)=-weighted_data(w).TE;
d(:,w+1)=1;
D=[D;d]; %#ok<AGROW>
end
% Build response variable vector
y=[];
for w=1:Nweighted
nTEs=length(weighted_data(w).TE);
assert(nTEs>1,'each weighting must have more than one TE')
localDims=size(weighted_data(w).data);
assert(localDims(end)==nTEs,'echoes must be in the final dimension')
assert(prod(localDims(1:end-1))==Nvoxels,'all input data must have the same number of voxels');
rData=reshape(weighted_data(w).data,Nvoxels,nTEs);
% log(0) is not defined, so warn the user about zeroes in their data
% for methods involving a log transform.
% The warning can be disabled with "warning('off','hmri:zerosInInput')"
if any(rData(:)==0)&&~contains(lower(method),'nlls')
warning('hmri:zerosInInput',[...
'Zero values detected in some voxels in the input data. This ',...
'will cause estimation to fail in these voxels due to the log ',...
'transform. If these voxels are background voxels, consider ',...
'removing them from the input data matrices. ',...
'Zero values which occur only at high TE in voxels of interest ',...
'could be replaced with a small positive number, e.g. eps(1) ',...
'(if the data magnitudes are ~1) or 1 if the data are ',...
'integer-valued. Note: Care must be taken when replacing ',...
'values, as this could bias the R2* estimation.']);
end
y=[y;rData.']; %#ok<AGROW>
end
%% Estimate R2*
switch lower(method)
case 'ols'
beta=OLS(log(y),D);
beta(2:end,:)=exp(beta(2:end,:));
case {'wls1','wls2','wls3'}
% Number of WLS iterations is specified using 'WLS[N]', where '[N]'
% is a positive integer
r=regexp(lower(method),'^wls(\d+)$','tokens');
niter=str2double(r{1}{1});
logy=log(y);
% Use OLS estimates for initial weights
y0=exp(D*OLS(logy,D));
% Loop over voxels
parfor n=1:size(y,2)
beta(:,n)=WLS(logy(:,n),D,y0(:,n),niter);
end
beta(2:end,:)=exp(beta(2:end,:));
case {'nlls_ols','nlls_wls1','nlls_wls2','nlls_wls3'}
% Check for NLLS case, where specification of the log-linear
% initialisation method is in the method string following a hyphen
r=regexp(lower(method),'^nlls_(.*)$','tokens');
initmethod=r{1}{1};
% Initial estimate using log-linear method
[R2s0,A0]=hmri_calc_R2s(weighted_data,initmethod);
if ~exist('opt','var')
opt=optimset('lsqcurvefit');
end
opt=optimset(opt,'Display','off');
beta0=zeros(Nweighted+1,Nvoxels);
beta0(1,:)=R2s0(:);
for w=1:Nweighted
beta0(w+1,:)=A0{w}(:);
end
expDecay=@(x,D) (D(:,2:end)*x(2:end)).*exp(x(1)*D(:,1));
% Loop over voxels
parfor n=1:size(y,2)
beta(:,n)=lsqcurvefit(@(x,D)expDecay(x,D),beta0(:,n),D,y(:,n),[],[],opt);
end
otherwise
error(['method ' method ' not recognised'])
end
%% Output
% extra unity in reshape argument avoids problems if size(dims)==2.
R2s=reshape(beta(1,:),[dims(1:end-1),1]);
% Extrapolate weightings to TE=0
if nargout>1
extrapolated=cell(size(weighted_data)); % cell element per contrast
for w=1:Nweighted
extrapolatedData=beta(w+1,:);
extrapolated{w}=reshape(extrapolatedData(:),[dims(1:end-1),1]);
end
end
end
%% Fitting methods
function beta=OLS(y,D)
% allows for vectorized voxel processing
beta=(D'*D)\(D'*y);
end
function beta=WLS(y,D,y0,niter)
% y0 estimate needed for initial weights, could be raw y values or estimate
% from OLS.
% This function only allows single voxel processing!
% Fix number of iterations to avoid checking convergence of each voxel
for m=1:niter
% weights are updated using latest parameter estimates
W=diag(y0.*conj(y0));
W=W./trace(W); % normalisation
% WLS estimate
beta=(D'*W*D)\(D'*W*y);
y0=exp(D*beta);
end
end