title | tags | |||||
---|---|---|---|---|---|---|
Example analysis pipeline for Biosemi data |
|
The following is an example analysis pipeline that was used for the FieldTrip workshop at CUNY, New York by Stephen and Saskia in 2011.
{% include markup/danger %} Biosemi BDF data should always be off-line referenced to one of the electrodes that is present in the data. The raw data in the file is relative to the CMS and still contains relatively much artifactual and line-noise. See also the Biosemi website. {% include markup/end %}
% load biosemi160 into q (which has sensor locations in polar coordinates
% add fiducials then save
% cfg=[];
% cfg.layout='biosemi160.lay';
% q=ft_prepare_layout(cfg);
zeroline = 92/40*50;
q{161,1} = 'nasion';
q{161,2} = zeroline; %ten percent under FPz
q{161,3} = q{104,3};
q{162,1} = 'inion';
q{162,2} = zeroline; %ten percent under Oz
q{162,3} = q{23,3};
q{163,1} = 'left';
q{163,2} = -zeroline; %ten percent under T7
q{163,3} = q{137,3};
q{164,1} = 'right';
q{164,2} = zeroline; %ten percent under T8
q{164,3} = q{64,3};
save('LayoutNY_fiducials',q);
% construct 3D electrode positions
load LayoutNY_fiducials.mat
ph = cell2mat(q(:,2));
th = cell2mat(q(:,3));
x = sin(ph*pi/180) .* cos(th*pi/180);
y = sin(ph*pi/180) .* sin(th*pi/180);
z = cos(ph*pi/180);
plot3(x, y, z, '.');
elec.label = q(:,1);
elec.pnt = [x y z];
% scale to get into mm
elec.pnt = 100*elec.pnt;
vol = ft_read_headmodel('headmodel/standard_bem.mat');
% realign electrodes to headmodel
cfg = [];
cfg.method = 'interactive';
cfg.elec = elec;
cfg.headshape = vol.bnd(1); %1 = skin
elec = ft_electroderealign(cfg);
%save new electrodes
save elec160.mat elec
clear all
cond = {'Pitch20', 'Pitch40', 'Timbre490', 'Timbre510'};
for c = 1:4 % loop over the 4 conditions
for block = 1:4 % loop over the 4 blocks within each condition
% create the trial definition
cfg=[];
cfg.filename = ['data/RON_', cond{c}, '_Block', num2str(block), '_Sub03.bdf'];
cfg.trialfun = 'trialfunNY';
cfg.trialdef.eventtype = 'STATUS';
cfg.trialdef.eventvalue = [121 122 103 104 111 112]; % stimulus triggers (standard before (2), deviant (2), standard after(2))
cfg.trialdef.eventcorrect = [1 2 1 2 1 2 ]; % correct response triggers
cfg.trialdef.prestim = 0.2; % latency in seconds
cfg.trialdef.poststim = 1; % latency in seconds
cfg = ft_definetrial(cfg);
% remember condition and block
trl = cfg.trl;
trl(:,6) = c;
trl(:,8) = block;
% define the relevant trials
for i=1:length(trl)
if ismember(trl(i,4), [121 122])
trl(i,7) = 1; % standard before
elseif ismember(trl(i,4), [103 104])
trl(i,7) = 2; % deviant
elseif ismember(trl(i,4), [111 112])
trl(i,7) = 3; % standard after
end
end
% read and preprocess the data using the trial definition
cfg=[];
cfg.dataset = ['data/RON_', cond{c}, '_Block', num2str(block), '_Sub03.bdf'];
cfg.trl = trl;
cfg.reref = 'yes';
cfg.refchannel = 'EXG5';
data = ft_preprocessing(cfg);
% save the data to disk
save(['analysis/prepro/data_', cond{c}, '_block', num2str(block)], 'data')
end
end
clear all
cond = {'Pitch20' 'Pitch40', 'Timbre490', 'Timbre510'};
% concatenate all trials/blocks
ipart=1;
for icond = 1:4
for iblock = 1:4
disp(['Loading analysis/prepro/data_', cond{icond}, '_block', num2str(iblock)]);
load(['analysis/prepro/data_', cond{icond}, '_block', num2str(iblock)], 'data');
datapart(ipart) = data;
ipart=ipart+1;
end
end
cfg=[];
data = ft_appenddata(cfg, datapart(1), datapart(2),datapart(3),datapart(4),datapart(5),datapart(6),datapart(7),datapart(8),datapart(9),datapart(10),datapart(11),datapart(12),datapart(13),datapart(14),datapart(15),datapart(16));
clear datapart*
% detect eog artifacts using ICA
cfg=[];
cfg.method = 'runica';
cfg.channel = 1:160; % EEG channels only
datacomp = ft_componentanalysis(cfg, data);
save('analysis/ica/datacomp', 'datacomp')
% plot the components to detect the artifacts
figure
k=1; f=1;
for icomp=1:length(datacomp.topo)
if k>20
k=1;
figure
end
cfg=[];
cfg.layout = 'biosemi160.lay';
cfg.xlim = [icomp icomp];
subplot(4,5,k);
ft_topoplotER(cfg, datacomp);
title(icomp);
k = k+1;
end
% remove components that reflect eog artifacts
cfg=[];
cfg.component = [12 49]; % note the exact numbers will vary per run
data = ft_rejectcomponent(cfg, datacomp);
save('analysis/data_clean', 'data')
%% manual artifact rejection
% remove the mean
cfg=[];
cfg.demean = 'yes';
data = ft_preprocessing(cfg, data);
% shuffle the trials for non-biased artifact rejection
shuffle = randperm(length(data.trial));
datashuff = data;
for i=1:length(data.trial)
datashuff.trial{i} = data.trial{shuffle(i)};
datashuff.time{i} = data.time{shuffle(i)};
datashuff.trialinfo(i,:) = data.trialinfo(shuffle(i),:);
end
% browse for artifact rejection
cfg = [];
cfg.channel = 'EEG';
cfg.continuous = 'no';
cfg = ft_databrowser(cfg, data);
data = ft_rejectartifact(cfg,data);
% visual artifact rejection in summary mode
cfg = [];
cfg.method = 'summary';
data = ft_rejectvisual(cfg, data);
% the following trials were removed: 43, 87, 174, 261, 307, 333, 343, 398, 557, 583, 593, 606, 666, 670, 674, 741, 742, 743, 744, 745, 899
% the following channels were removed: A7, A13, A14, A25, A26, A27, A28, B8, B9, B12, B19, B32, D1, D21, D23, D25, D26, D31, D32, E1, E17, E21, E32
save('analysis/data_clean', 'data')
clear all
cond = {'Pitch20' 'Pitch40', 'Timbre490', 'Timbre510'};
load('analysis/data_clean', 'data')
for icond = 1:4 % loop over the 4 conditions
for istim = 1:3 % loop over standard-before, deviant, standard-after
% compute timelocked averages for each condition
cfg=[];
cfg.lpfilter = 'yes';
cfg.lpfreq = 40;
cfg.trials = find(data.trialinfo(:,3) == icond & data.trialinfo(:,4) == istim);
timelock{icond,istim} = ft_timelockanalysis(cfg, data);
% baseline correct
cfg=[];
cfg.baseline = [-0.2 0];
timelock{icond,istim} = ft_timelockbaseline(cfg, timelock{icond,istim});
end
end
save('analysis/timelock/timelock_all','timelock');
% plot the ERPs over all sensors
figure
for i = 1:4
subplot(2,2,i);
ft_singleplotER([],timelock{i,1},timelock{i,2},timelock{i,3});
title(cond{i});
if i==1
legend('standard-before', 'deviant', 'standard-after', 'Location', 'NorthWest')
end
end
print(gcf, '-dpng', 'figures/fig1_ERP')
% plot ERP in interactive mode, only for standard-before
cfg = [];
cfg.layout = 'biosemi160lay.mat';
cfg.interactive = 'yes';
figure; ft_multiplotER(cfg,timelock{1,1});
% compute the contrasts
for icond = 1:4
% standard before vs deviant
stb_vs_dev{icond} = timelock{1,1};
stb_vs_dev{icond}.avg = timelock{icond,2}.avg - timelock{icond,1}.avg;
% standard before vs standard after
stb_vs_sta{icond} = timelock{1,1};
stb_vs_sta{icond}.avg = timelock{icond,3}.avg - timelock{icond,1 }.avg;
end
% plot the contrasts
figure
for icond = 1:4
cfg=[];
cfg.xlim = [0.5 7];
cfg.zlim = 'maxabs';
cfg.interactive = 'yes';
cfg.layout = 'biosemi160lay.mat';
cfg.colorbar = 'yes';
subplot(2,2,icond);
ft_topoplotER(cfg, stb_vs_dev{icond});
end
print(gcf, '-dpng', 'figures/fig2_ERP')
figure
for icond = 1:4
cfg=[];
cfg.xlim = [0.5 7];
cfg.zlim = 'maxabs';
cfg.interactive = 'yes';
cfg.layout = 'biosemi160lay.mat';
cfg.colorbar = 'yes';
subplot(2,2,icond);
ft_topoplotER(cfg, stb_vs_sta{icond});
end
print(gcf, '-dpng', 'figures/fig3_ERP')
%% now collapse
% compute averages for pitch and timbre
for istim = 1:3
cfg=[];
cfg.lpfilter = 'yes';
cfg.lpfreq = 40;
cfg.keeptrials = 'yes';
cfg.trials = find((data.trialinfo(:,3) == 1 | data.trialinfo(:,3) == 2 ) & data.trialinfo(:,4) == istim);
timelock_pitch{istim} = ft_timelockanalysis(cfg, data);
cfg.trials = find((data.trialinfo(:,3) == 3 | data.trialinfo(:,3) == 4 ) & data.trialinfo(:,4) == istim);
timelock_timbre{istim} = ft_timelockanalysis(cfg, data);
cfg=[];
cfg.baseline = [-0.2 0];
timelock_pitch{istim} = ft_timelockbaseline(cfg, timelock_pitch{istim});
timelock_timbre{istim} = ft_timelockbaseline(cfg, timelock_timbre{istim});
end
save('analysis/timelock/timelock_avg','timelock_*');
% plot contrasts
figure
subplot(1,2,1);
ft_singleplotER([],timelock_pitch{1},timelock_pitch{2},timelock_pitch{3});
title('Pitch');
subplot(1,2,2);
ft_singleplotER([],timelock_timbre{1},timelock_timbre{2},timelock_timbre{3});
title('Timbre');
print(gcf, '-dpng', 'figures/fig4_ERP')
cfg = [];
cfg.layout = 'biosemi160lay.mat'; %in meters
%cfg.layout = 'elec160.mat'; %in mm
cfg.neighbourdist = .1;
cfg.neighbours = ft_prepare_neighbours(cfg,timelock_pitch{1});
cfg.latency = [0 1];
cfg.parameter = 'trial';
cfg.method = 'montecarlo';
cfg.design = [1:size(timelock_pitch{2}.trial,1) 1:size(timelock_pitch{1}.trial,1);
ones(1,size(timelock_pitch{2}.trial,1)), ones(1,size(timelock_pitch{1}.trial,1))*2];
cfg.numrandomization = 1000;
cfg.correctm = 'cluster';
cfg.correcttail = 'prob';
cfg.ivar = 2;
cfg.uvar = 1;
cfg.statistic = 'indepsamplesT';
stat = ft_timelockstatistics(cfg, timelock_pitch{2}, timelock_pitch{1});
save('analysis/timelock/stat','stat');
%% plot
% cfg=[];
% cfg.layout = 'biosemi160lay.mat';
% ft_clusterplot(cfg, stat)
% find relevant clusters
ipos = find([stat.posclusters.prob]<=0.05);
ineg = find([stat.negclusters.prob]<=0.05);
% loop over all sig positive clusters
for i=ipos
cfg=[];
cfg.highlight = 'on';
cfg.zparam = 'stat';
cfg.layout = 'biosemi160lay.mat';
cfg.style = 'straight';
cfg.gridscale = 500;
% find the significant time range for this cluster
tmp=[];
for t = 1:length(stat.time)
if ~isempty(find(any(stat.posclusterslabelmat(:,t)==ipos)))
tmp = [tmp t];
end
end
cfg.xlim = [stat.time(tmp(1)) stat.time(tmp(end))];
% find the channels belonging to this cluster
cfg.highlightchannel = [];
for c = 1:length(stat.label)
if ~isempty(find(any(stat.posclusterslabelmat(c,:)==ipos)))
cfg.highlightchannel = [cfg.highlightchannel c];
end
end
figure
ft_topoplotER(cfg, stat);
title('positive cluster')
print(gcf, '-dpng', ['figures/fig5_STAT_pos', num2str(i)])
end
% loop over all sig negative clusters
for i=ineg
cfg=[];
cfg.highlight = 'on';
cfg.zparam = 'stat';
cfg.layout = 'biosemi160lay.mat';
cfg.style = 'straight';
cfg.gridscale = 500;
% find the significant time range for this cluster
tmp=[];
for t = 1:length(stat.time)
if ~isempty(find(any(stat.negclusterslabelmat(:,t)==ineg)))
tmp = [tmp t];
end
end
cfg.xlim = [stat.time(tmp(1)) stat.time(tmp(end))];
% find the channels belonging to this cluster
cfg.highlightchannel = [];
for c = 1:length(stat.label)
if ~isempty(find(any(stat.negclusterslabelmat(c,:)==ineg)))
cfg.highlightchannel = [cfg.highlightchannel c];
end
end
figure
ft_topoplotER(cfg, stat);
title('negative cluster')
print(gcf, '-dpng', ['figures/fig6_STAT_neg', num2str(i)])
end
load analysis/timelock/timelock_all.mat
load headmodel/standard_mri.mat
elec = ft_read_sens('elec160.mat');
vol = ft_read_headmodel('headmodel/standard_bem.mat');
figure, ft_plot_headmodel(vol)
% prepare data
cfg = [];
cfg.demean = 'yes';
cfg.baselinewindow = [-inf 0];
cfg.reref = 'yes';
cfg.refchannel = 'all'; % thereby averaging systematic leadfield error over sensors
for icond = 1 : 4
for istim = 1 : 3
timelock{icond,istim} = ft_preprocessing(cfg, timelock{icond,istim});
end
end
% do some averages
before = timelock{1,1};
before.trial{1} = (timelock{1,1}.trial{1} + timelock{2,1}.trial{1} + timelock{3,1}.trial{1} + timelock{4,1}.trial{1} ) ./ 4;
deviant = timelock{1,1};
deviant.trial{1} = (timelock{1,2}.trial{1} + timelock{2,2}.trial{1} + timelock{3,2}.trial{1} + timelock{4,2}.trial{1} ) ./ 4;
after = timelock{1,1};
after.trial{1} = (timelock{1,3}.trial{1} + timelock{2,3}.trial{1} + timelock{3,3}.trial{1} + timelock{4,3}.trial{1} ) ./ 4;
% plot ERPs
cfg = [];
cfg.layout = 'biosemi160lay.mat';
cfg.interactive = 'yes';
figure; ft_multiplotER(cfg, before, deviant, after);
legend;
% dipole fitting
cfg = [];
cfg.headmodel = vol;
cfg.elec = elec;
cfg.model = 'regional';
cfg.numdipoles = 2;
cfg.latency = [0.080 0.1]; %n100
cfg.gridsearch = 'yes';
cfg.resolution = 20; % mm
cfg.nonlinear = 'yes';
cfg.symmetry = 'x';
source = ft_dipolefitting(cfg, before);
% topoplot ERP
cfg = [];
cfg.layout = 'biosemi160lay.mat';
cfg.zparam = 'Vdata';
figure; ft_topoplotER(cfg, source);
% topoplot dipole model
cfg.zparam = 'Vmodel';
figure; ft_topoplotER(cfg, source);
% topoplot difference data with model
source.Vdifference = source.Vdata ./ source.Vmodel;
cfg.zparam = 'Vdifference';
cfg.zlim = [0 2];
figure; ft_topoplotER(cfg, source);
% plot first dipole position on mni
cfg = [];
cfg.method = 'ortho';
cfg.location = source.dip.pos(1,:);
figure; ft_sourceplot(cfg, mri);
% plot second dipole position on mni
cfg.location = source.dip.pos(2,:);
figure; ft_sourceplot(cfg, mri);
% use dipole positions to extract timecourse of whole trial
cfg = source.cfg;
cfg.dip.pos = source.dip.pos;
cfg.gridsearch = 'no';
cfg.nonlinear = 'no';
cfg.latency = [-inf inf];
cfg.headmodel = vol;
cfg.elec = elec;
source2 = ft_dipolefitting(cfg, before);
% plot time courses of both dipoles
figure; hold;
plot(source2.time, source2.dip.mom(1:3,:), '-')
plot(source2.time, source2.dip.mom(4:6,:), ':')
% use Singular Value Decomposition to extract component from all
% three orientations of first dipole. u = identity matrix, s = scaling, v =
% signal strength
[u1, s1, v1] = svd(source2.dip.mom(1:3,:));
[u2, s2, v2] = svd(source2.dip.mom(4:6,:));
figure; hold;
plot(source2.time, v1(:,1));
plot(source2.time, v2(:,1),':');
% use Pythagoras to make one dimensional dipole from three orientations
figure; hold;
plot(source2.time, sqrt(sum(source2.dip.mom(1:3,:).^2)));
plot(source2.time, sqrt(sum(source2.dip.mom(4:6,:).^2)),':');