-
Notifications
You must be signed in to change notification settings - Fork 2
/
utils.py
378 lines (334 loc) · 14.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import pickle
from sklearn.metrics import average_precision_score
from torch.autograd import Variable
from shutil import copyfile
from data.data import MSCOCOvqa
import time
import cv2
cuda_available = torch.cuda.is_available()
coco_orig_path = '/ais/gobi6/seung/seung-project/mscoco'
def vis_detections(im, class_name, dets, thresh=0.8, highest=False, use_colour=None, h=1.0, w=1.0, rc=1.0, alpha=1.0):
"""Visual debugging of detections."""
overlay = im
for i in range(dets.shape[0]):
overlay = im.copy()
output = im.copy()
bbox = []
for x, ind in zip(dets[i, :4], range(4)):
if ind == 0 or ind == 2:
x = int(np.round(x * w / rc))
if ind == 1 or ind ==3:
x = int(np.round(x * h / rc))
bbox.append(x)
bbox = tuple(bbox)
thickness = 2
if highest:
colour = (0, 0, 200)
else:
colour = (0, 200, 0)
if use_colour is not None:
colour = use_colour
if alpha == 1.0:
cv2.rectangle(overlay, bbox[0:2], bbox[2:4], colour, thickness=thickness)
cv2.putText(overlay, '%s' % (class_name), (bbox[0], bbox[1] + 15), cv2.FONT_HERSHEY_PLAIN,
1.0, (0, 0, 255), thickness=1)
return overlay
else:
cv2.rectangle(overlay, bbox[0:2], bbox[2:4], colour, -1)
cv2.addWeighted(overlay, alpha, output, 1 - alpha, 0, output)
return output
return overlay
def to_var(x, volatile=False):
if torch.cuda.is_available():
x = x.cuda()
return Variable(x, volatile=volatile)
def to_contiguous(tensor):
if tensor.is_contiguous():
return tensor
else:
return tensor.contiguous()
class LanguageModelCriterion(nn.Module):
def __init__(self):
super(LanguageModelCriterion, self).__init__()
def forward(self, input, target, mask):
# truncate to the same size
target = target[:, :input.size(1)]
mask = mask[:, :input.size(1)]
input = to_contiguous(input).view(-1, input.size(2))
target = to_contiguous(target).view(-1, 1)
mask = to_contiguous(mask).view(-1, 1).float()
output = -input.gather(1, target.long()) * mask
output = torch.sum(output) / torch.sum(mask)
return output
def clip_gradient(optimizer, grad_clip):
for group in optimizer.param_groups:
for param in group['params']:
if param.grad is not None:
param.grad.data.clamp_(-grad_clip, grad_clip)
def adjust_learning_rate(optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr #param_group['lr']*0.1
def calculate_tag_stat(all_labels, all_preds, all_preds_top3, num_correct, num_error, val_loss, num_val_tag, num_seen, total_samples, t0, epoch):
tmp_labels = []
for ent in all_labels:
for lb in ent:
tmp_labels.append(lb)
tmp_preds = []
for ent in all_preds:
for pr in ent:
tmp_preds.append(pr)
tmp_preds_top3 = []
for ent in all_preds_top3:
for pr in ent:
tmp_preds_top3.append(pr)
all_labels = np.stack(tmp_labels, axis=0)
all_preds = np.stack(tmp_preds, axis=0)
all_preds_top3 = np.stack(tmp_preds_top3, axis=0)
map_score = average_precision_score(np.copy(all_labels), np.copy(all_preds))
map_score_top3 = average_precision_score(np.copy(all_labels), np.copy(all_preds_top3))
accuracy = num_correct*1.0/(num_seen)
num_error = num_error*1.0/(total_samples)
val_loss = val_loss/num_val_tag
map_score2 = calculate_mAP(np.copy(all_labels), np.copy(all_preds))
map_score2_top3 = calculate_mAP(np.copy(all_labels), np.copy(all_preds_top3))
log_str = 'Epoch(val): ' + str(epoch) + ',\tLoss: ' + str(val_loss) + \
',\tnum_error: ' + str(num_error) + '\n' + \
'\tmAP: ' + str(map_score) + ',\tmAP2: ' + str(map_score2) + '\n' + \
'\tmAP(top3): ' + str(map_score_top3) + ',\tmAP2(top3): ' + str(map_score2_top3) +'(' +str( "%.2f" % (time.time()-t0)) + ' sec) \n'
return log_str, map_score2
def calculate_mAP(labels, probs):
num_cls = len(labels[0])
AP_all = np.zeros(num_cls)
for m in range(num_cls):
gt = labels[:, m]
out = probs[:, m]
si = np.argsort(out)[::-1]
tp = gt[si]
fp = (-1.0*(gt-1.0))[si]
tp = np.cumsum(tp)
fp = np.cumsum(fp)
rec = tp/sum(gt)
prec = tp/(fp+tp)
ap = calculate_AP(rec, prec)
AP_all[m] = ap
return np.mean(AP_all)
def calculate_AP(rec, prec):
mrec = np.insert(rec, 0, 0)
mrec = np.insert(mrec, len(mrec), 1)
mpre = np.insert(prec, 0, 0)
mpre = np.insert(mpre, len(mpre), 0)
for i in range(len(mpre)-2, 0, -1):
mpre[i] = max(mpre[i], mpre[i+1])
i = np.nonzero(mrec[1:]-mrec[:-1])[0]+1
ap = sum((mrec[i]-mrec[i-1]) * mpre[i])
return ap
def get_model(chk, name):
if chk.has_key(name):
return chk[name]
print '##### checkpoint does not have module: ' + name
return None
def to_variable_cuda(variables, kind, volatile=False):
for v in range(len(variables)):
if kind[v] == 'float':
if cuda_available:
variables[v] = Variable((variables[v].type(torch.FloatTensor)).cuda(0), requires_grad=False, volatile=volatile)
else:
variables[v] = Variable((variables[v].type(torch.FloatTensor)), requires_grad=False, volatile=volatile)
else:
if cuda_available:
variables[v] = Variable((variables[v].type(torch.LongTensor)).cuda(0), requires_grad=False, volatile=volatile)
else:
variables[v] = Variable((variables[v].type(torch.LongTensor)), requires_grad=False, volatile=volatile)
return variables
def to_np(x):
'''
cast to numpy
'''
return x.data.cpu().numpy()
def get_dictionary(path):
dicts = pickle.load(open(path, 'rb'))
return dicts
def get_dataloader(vqa_data, path, batch_size, kwargs, w2i):
loader = torch.utils.data.DataLoader(
MSCOCOvqa(vqa_data, path, w2i, num_boxes=36),
batch_size=batch_size, shuffle=False, drop_last=False, **kwargs)
return loader
def set_mode(module_lst, mode, cuda_ind=0):
'''
set model mode: 'zero_grad', 'train', 'eval', 'cuda'
'''
for name, mod in module_lst.iteritems():
if mode == 'zero_grad':
mod.zero_grad()
elif mode == 'train':
mod.train()
elif mode == 'eval':
mod.eval()
elif mode == 'cuda':
mod.cuda(cuda_ind)
else:
print 'not implemented'
exit(-1)
def write_vqa(question, vqa_x, y, attentions, obj_output, att_output, cnt_outputs, log_dir, box, datapath, dicts, X_obj_label_orig, X_att_label_orig, \
rel_maps, gate_rels, rel_querys, obj_querys, i_n_gates, gate_objsubs, cnt_maps, q_id):
'''
write prediction classes something
'''
power = 4
vqa_x = F.softmax(vqa_x)
num_sample = vqa_x.size(0)
rc = 1.0
for sample_ind in range(num_sample):
info = {}
cur_q = q_id[sample_ind]
img_path = datapath[sample_ind]
img_id = img_path.split('/')[-1].split('.')[0]
file_name = '0' * (12 - len(str(img_id))) + str(img_id) + '.jpg'
file_name = 'COCO_val2014_'+file_name
orig_img_path = os.path.join(coco_orig_path, 'val2014', file_name)
copyfile(orig_img_path, os.path.join(log_dir, str(cur_q)+'_'+str(img_id)+'_orig.jpg'))
cur_boxes = box[sample_ind].data.cpu().numpy()
X_obj_label = X_obj_label_orig.data[sample_ind].cpu().numpy()
X_att_label = X_att_label_orig.data[sample_ind].cpu().numpy()
att_step = 0 # analyze the first time step
im = cv2.imread(orig_img_path)
h, w, _ = im.shape
######################### Output of attention module ##########################
im2show = np.copy(im)
cur_attentions = attentions[att_step][sample_ind].data.cpu().numpy()
assert len(cur_attentions) == len(cur_boxes)
topind = np.argmax(cur_attentions)
im2show = vis_detections(im2show, '', np.array([cur_boxes[topind]]), 0.0, use_colour=(0, 0, 200), h=h, w=w,
rc=rc, alpha=0.4)
im2show = vis_detections(im2show, '', np.array([cur_boxes[topind]]), 0.0, use_colour=(0, 0, 200), h=h, w=w,
rc=rc)
cv2.imwrite(os.path.join(log_dir, str(cur_q)+'_'+str(img_id) + '_attention.jpg'), im2show)
obj_label = dicts['obj_i2w'][np.argmax(X_obj_label[topind])]
a_out = X_att_label[topind].argsort()[-3:][::-1]
att_label = ''
for a in a_out:
att_label += str(dicts['att_i2w'][a])
info['vqa_obj_name'] = obj_label
info['vqa_att_name'] = att_label
################################################################################
##################### input & output for relationship module #####################
info['objsub'] = gate_objsubs[att_step][sample_ind].data.cpu().numpy()
info['rel_map_same'] = False
topind_input = np.argmax(obj_querys[att_step][sample_ind].data.cpu().numpy())
im2show = np.copy(im)
im2show = vis_detections(im2show, '', np.array([cur_boxes[topind_input]]), 0.0, use_colour=(200, 0, 0), h=h,
w=w, rc=rc, alpha=0.4)
im2show = vis_detections(im2show, '', np.array([cur_boxes[topind_input]]), 0.0, use_colour=(200, 0, 0), h=h,
w=w, rc=rc)
obj_label = dicts['obj_i2w'][np.argmax(X_obj_label[topind_input])]
a_out = X_att_label[topind_input].argsort()[-3:][::-1]
att_label = ''
for a in a_out:
att_label += str(dicts['att_i2w'][a])
info['rel_input_obj_name'] = obj_label
info['rel_input_att_name'] = att_label
topind_rel = np.argmax(F.softmax(rel_maps[att_step])[sample_ind].data.cpu().numpy())
im2show = vis_detections(im2show, '', np.array([cur_boxes[topind_rel]]), 0.0, use_colour=(0, 200, 0), h=h, w=w, rc=rc, alpha=0.4)
im2show = vis_detections(im2show, '', np.array([cur_boxes[topind_rel]]), 0.0, use_colour=(0, 200, 0), h=h, w=w, rc=rc)
obj_label = dicts['obj_i2w'][np.argmax(X_obj_label[topind_rel])]
a_out = X_att_label[topind_rel].argsort()[-3:][::-1]
att_label = ''
for a in a_out:
att_label += str(dicts['att_i2w'][a])
info['rel_output_obj_name'] = obj_label
info['rel_output_att_name'] = att_label
cv2.imwrite(os.path.join(log_dir, str(cur_q)+'_'+str(img_id) + '_rel.jpg'), im2show)
if topind_input == topind_rel:
info['rel_map_same'] = True
################################################################################
################################ counting map ##################################
info['cnt_map_blank'] = False
im2show = np.copy(im)
cur_cnt_maps = np.power(cnt_maps[att_step][sample_ind].data.cpu().numpy(), power)
cnt_inds = np.where(cur_cnt_maps > 0.5)
tmp = cur_cnt_maps
topind = np.argmax(tmp)
alphas = tmp/tmp[topind] * 0.5
info['cnt_obj_name'] = []
info['cnt_att_name'] = []
for ind in range(len(cur_boxes)): #, alphas):
cb, alpha = cur_boxes[ind], alphas[ind]
im2show = vis_detections(im2show, '', np.array([cb]), 0.0, use_colour=(100, 0, 150), h=h, w=w, rc=rc, alpha=alpha)
if alpha > 0.2:
obj_label = dicts['obj_i2w'][np.argmax(X_obj_label[ind])]
a_out = X_att_label[ind].argsort()[-3:][::-1]
att_label = ''
for a in a_out:
att_label += str(dicts['att_i2w'][a])
info['cnt_obj_name'].append(obj_label)
info['cnt_att_name'].append(att_label)
cv2.imwrite(os.path.join(log_dir, str(cur_q)+'_'+str(img_id) + '_cnt.jpg'), im2show)
if len(cnt_inds) == 0:
info['cnt_map_blank'] = True
################################################################################
#### Question ####
q = question.data[sample_ind].cpu().numpy()
q_str = ''
for q_ind in q:
if q_ind < len(dicts['vqa_q_i2w']):
q_str += dicts['vqa_q_i2w'][q_ind] + ' '
else:
break
##################
predy = vqa_x.data[sample_ind].cpu().numpy()
predy_ind_total = np.argmax(predy)
cls_str = str(sample_ind) + ': '
ny = y.data[sample_ind].cpu().numpy()
cls_inds = np.nonzero(ny)[0]
gt_ans = []
for cl in cls_inds:
cls_str += dicts['vqa_a_i2w'][cl] + '(' + str(ny[cl]) + '), '
gt_ans.append([dicts['vqa_a_i2w'][cl], ny[cl]])
info['question'] = q_str
info['gt_ans'] = gt_ans
info['pred_ans'] = [dicts['vqa_a_i2w'][predy_ind_total], predy[predy_ind_total]]
rel_max_ind = np.argmax(rel_querys[att_step][sample_ind].data.cpu().numpy())
info['gate_rel'] = [gate_rels[att_step][sample_ind].data.cpu().numpy(), dicts['rel_i2w'][rel_max_ind]]
info['i_n_gate'] = i_n_gates[att_step][sample_ind].data.cpu().numpy()
cnt_max_ind = np.argmax(cnt_outputs[att_step][sample_ind].data.cpu().numpy())
info['count'] = str(cnt_max_ind)
o_out = np.argmax(obj_output[0].data[sample_ind].cpu().numpy())
info['obj'] = dicts['obj_i2w'][o_out]
a_out = att_output[0].data[sample_ind].cpu().numpy().argsort()[-3:][::-1]
att_l = []
for cl in a_out:
att_l.append(dicts['att_i2w'][cl])
info['att'] = att_l
pickle.dump(info, open(os.path.join(log_dir, str(cur_q)+'_'+str(img_id)+'_info.p'), 'wb'))
return
def write_summary(slist, step, lg, log_file):
'''
write summary for given modules
'''
print 'writing summary'
for s, kind in slist:
if kind == 'histogram':
hist_summary(s, lg, step, log_file, name=s.name)
elif kind == 'scalar':
name, val = s
lg.scalar_summary(name, val, step)
print 'summary written'
def add_output(l, key, output_list):
if output_list.has_key(key):
l.append(output_list[key])
return l
def get_init_features(x, cur_task):
'''
initial featrue for controller
'''
cnn_features = x
if 'first' in cur_task:
cnn_features = F.normalize(cnn_features, dim=1)
else:
cnn_features = F.normalize(cnn_features, dim=2)
return cnn_features