
88	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 9 / $ 2 6 . 0 0 © 2 0 0 9 I E E E

software technology
E d i t o r : C h r i s t o f E b e r t n V e c t o r C o n s u l t i n g n c h r i s t o f . e b e r t @ v e c t o r - c o n s u l t i n g . d e

W
e’ve all been there: We’ve written a tech-
nically perfect application, the green bar
shows us all unit tests have passed, and
the coverage tool reports the degree of
coverage we aimed at. Nevertheless, the
(intended) users aren’t really impressed

and tell us that the application might be a nice piece
of software but it’s not what they expected. Situa-

tions like this brought
acceptance testing to
the fore.

However, manual
acceptance testing can
be tedious. To provide
automated acceptance
testing of Web applica-
tions, particularly those
using Ajax (Asynchro-
nous JavaScript and

XML), the set of open source Selenium tools comes
in handy (see Table 1). With these tools, develop-
ers can easily run acceptance tests in their Web
browsers.

Acceptance Testing
Acceptance tests completely leave out a program’s
inner machinations and focus solely on the effects
that affect the user. They describe exactly what

the system should and shouldn’t do to gain user
acceptance.

Depending on the system, this “what” can be
anything from initiating specific jobs in a print-
ing factory to sending out text messages to cell
phones. However, in most cases user acceptance
hinges on what can be seen on and done with the
user interface. For example, users will expect that
an email program’s “send” button will be active
only when at least one recipient has been specified
and that copies of sent messages will be visible in
the “sent” folder.

Unlike unit tests, acceptance tests take the
form of a step-by-step script that acceptance tes-
ters walk through while sitting in front of the ap-
plication under test. As with any test, there can be
some setup (a database with some dummy users)
and a teardown.

Although many companies never really go be-
yond this stage, tests show their true power (and
soothing qualities) only when run as automatic
regression tests. In a Java environment, GUI
test tools include Jemmy, SWTBot, and Abbot,
and tools for testing Web applications include
HtmlUnit or HttpUnit (For URLs for these and
other tools, see the “Resources” sidebar). In gen-
eral, these tools come in two flavors: capture-
and-replay versus programmatic. Capture-and-

Andreas Bruns, Andreas Kornstädt, and Dennis Wichmann

Web applications tend to continuously evolve and thus need thorough, yet lean and automatic, regres-
sion testing. In this installment of Software Technology, Andreas Kornstädt and his colleagues describe
automatic regression testing for Web applications that uses the Selenium testing framework. Selenium
is portable open source software available for Windows, Linux, and Macintosh. Tests are written as
HTML tables or in a number of programming languages and can run directly in most Web browsers.
Andreas and his colleagues also provide many useful testing hints for practitioners. I look forward to
hearing from both readers and prospective column authors about this column and the technologies you
want to know more about. —Christof Ebert

Web Application Tests
with Selenium

	 September/October 2009 I E E E S o f t w a r e � 89

Software Technology

replay tools are great for ensuring that a
certain scenario leads to the same results
that it did previously. They do this by re-
cording a real user’s actions as he or she
walks through the script and replaying
those actions in the application. You can
effortlessly specify tests that way, but the
nightmare begins if the scenario or the
software changes and the recording must
be adapted. Programmatic tests take more
time to craft, but making changes doesn’t
cause major hassles. These tests are more
flexible and can be written in a test-first
manner, without the application under
test being actually there.

Testing Web Applications
The classic way to test Web applications
was on the protocol level with HttpUnit
and HtmlUnit. The tester created an
HTTP request, sent it to the Web site un-
der test, and analyzed the response (usu-
ally in HTML). The advent of Rich Inter-
net applications (RIAs) using Ajax made
handling these classic tools much more
cumbersome. Instead of a single request-
response cycle, test authors must coordi-
nate an arbitrary number of those cycles
in parallel.

Selenium Core
Following the shift from the protocol
level to the user-interaction level, testing
what can actually be seen and done in the
browser has more appeal. Selenium Core
achieves this by running a JavaScript ap-
plication in a host browser and controlling
the Web application under test using that
browser’s capabilities. It’s available for the
current and previous versions of Internet
Explorer, Firefox, Safari, and Opera.

The most basic way of interacting with
Selenium Core is sending it commands in
Selenese, Selenium’s own control language.
The commands are grouped together in an
HTML table with columns for the com-
mand (type, clickAndWait), the target element
(amount), and optionally a value. Table 2 lists
some useful Selenese commands.

A Remote Control
for Browsers
Producing HTML tables and learning Se-
lenese vocabulary isn’t to everyone’s taste,
so Selenium provides Remote Control
(RC) applications in C#, Java, Perl, PHP,
Python, and Ruby. Each Selenium RC API

offers matching calls for all Selenese com-
mands plus commands to start, stop, and
configure browsers.

Figure 1 shows how to test autocomple-
tion of country codes using Selenium RC
for Java. Besides methods for controlling
the browser (start, open, stop), checking the
browser’s state (getTitle, isElementPresent), and
manipulating the application (click, type),
Selenium RC offers utilities for common
tasks such as waiting (through built-in util-
ities such as waitForPageToLoad or by customiz-
ing commands with Wait).

Hints for Practitioners
Mastering Selenium RC’s API takes some
time, but in most cases you can quickly
find what you need. However, some prob-
lems require more than just examining
the API.

Users in the Driver’s Seat
Users tend to quickly change their minds
about tests, so programming can quickly
appear to be a never-ending task. Instead of
programming each test individually, pro-
gramming fixtures for test orchestration

Table 1
Selenium tools

Tool Purpose

Selenium Core Modify and check an Ajax application using commands in Selenese,
Selenium’s control language.

Selenium RC Remotely control Selenium Core using a common programming language.

Selenium Grid Use several remote controls in parallel to expedite testing.

Selenium IDE Capture and replay tests from within Firefox.

Resources
The most complete source of information about Selenium is at http://seleniumhq.
org/docs.

Java Power Tools, by John Ferguson Smart (O’Reilly 2008), contains a sub-
stantial chapter on Selenium. It also shows how to easily integrate Selenium with
JUnit, Ant, and Maven. But be warned: the book has chapters on many other
tools and totals over 900 pages. On the other hand, An Introduction to Testing
Web Applications with twill and Selenium, by C. Titus Brown, Gheorghe Gheo-
rghiu, and Jason Huggins (2007), from the O’Reilly Short Cuts series, is concise
but, owing to its nature, can’t provide in-depth coverage.

Wikipedia briefly but adequately describes acceptance testing (http://en.
wikipedia.org/wiki/Acceptance_testing), but Fit for Developing Software: Frame-
work for Integrated Tests, by Rick Mugrige and Ward Cunningham (Prentice
Hall, 2005), is still the ultimate resource on the subject. Plus, it gives a very good
introduction to the acceptance-test tools Fit and FitNesse.

Here are URLs for tools mentioned in the main article:

Selenium Core: http://seleniumhq.org/projects/core■■

Selenium IDE: http://seleniumhq.org/projects/ide■■

Selenium RC: http://seleniumhq.org/projects/remote-control■■

Selenium Grid: http://selenium-grid.seleniumhq.org■■

Abbot: http://abbot.sourceforge.net■■

CubicTest: http://cubictest.openqa.org■■

FitNesse: http://fitnesse.org■■

HtmlUnit : http://htmlunit.sourceforge.net■■

HttpUnit: http://httpunit.sourceforge.net■■

Jemmy: http://jemmy.netbeans.org■■

SWTBot: www.eclipse.org/swtbot■■

WebDriver: http://code.google.com/p/webdriver■■

90	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

Software Technology

 tools such as Fitnesse is a good idea.
These fixtures group together actions
such as filling out a complete form. They
become building blocks for larger tests
that don’t require reprogramming but just
editing and rescripting by users.

Speeding Things Up
Although tests with Selenium RC are much
closer to the level of the user’s experience
than those with protocol-level tools such
as HtmlUnit and HttpUnit, they come at a
premium regarding time. Everything goes
through the browser’s JavaScript inter-
preter, which can make tests much slower
than unit tests or GUI tests of desktop ap-
plications. Although Selenium Grid’s pur-
pose is to simulate an array of multiple
users for load testing, you can use it to
break a long test into smaller parts. These
parts then execute in parallel on several
machines instead of in sequence, which
speeds things up.

Being Less Strict Helps
Because Selenium Core runs in the browser,
it’s subject to browser safety mechanisms
such as the same origin policy, which pre-
vents JavaScript code from spanning more
than one site. Unless you want to test local
applications only, turning off enforcement
of that policy should be one of the first
things you do.

Making Sure the Click Goes Through
The dynamic nature of Ajax applica-
tions is great for users but could become
a nightmare for testers because keep-
ing track of appearing, disappearing,
hidden, and duplicate elements can get
complicated. Although you could re-
trieve these elements programmatically,
it’s a good idea to assign unique IDs to
application elements and refer to those
IDs when writing tests. However, this is
an option only if the application under
test can be modified.

Easy Paths
If you can’t use IDs, specifying locators
becomes inevitable (you can use Javascript
or XPath expressions for Dom traversal,
as well as Cascading Style Sheets Selec-
tors). Because these tend to be difficult
to read and are repetitive, writing some
helpers makes using locators much easier
(see Figure 2).

Table 2
Useful Selenese commands

Command Purpose

Modifications

 type(locator, value) Fill text fields, text areas, password fields, and so on.

 select(selectLocator, optionLocator) Select an option from a drop-down menu.

 click(locator) Push a button, check or uncheck a checkbox, select a radio
button, or follow a link.

 xxxAndWait The same as above, but wait until the action has caused a
navigation or refresh.

Checks

 verifyXXX(locator, pattern) Verify whether an element matches the given pattern.

 verifyXXXPresent(pattern) Verify whether the element is present.

 assert … The same as verify, but terminate if verification fails.

 waitForXXX Wait until an element shows a certain quality or becomes
present.

(a)

(b)

Figure 1. Testing autocompletion of country codes using Selenium Remote
Control for Java: (a) a very simple sample application and (b) a typical test
with setup and teardown as well as access, modification, and verification.
Remote Control methods have straightforward names, which makes life
much easier. Fortunately, there are ready-to-use features for various kinds of
waiting (the Wait class in the middle and waitForPageToLoad further down), which
we used to have to write ourselves when using more low-level tools.

	 September/October 2009 I E E E S o f t w a r e � 91

Software Technology

S elenium’s key concept of the core
running in the browser is a big step
forward toward specifying above-

protocol-level tests deserving the name
“acceptance test.” However, this approach
entails all the problems of JavaScript, such
as low speed and security issues. Hope-
fully, this issue will cease being a nuisance
in future versions, which are expected to
let users choose between executing tests
by accessing Selenium Core inside the
browser (as with the current version), us-
ing a simulated browser (using HtmlUnit
or HttpUnit), or using WebDriver to ex-
ternally control the browser. (Table 3

compares Selenium, HtmlUnit, and Web-
Driver.)

Andreas Bruns is a senior software engineer at C1
Workplace Solutions (C1 WPS), which focuses on consulting
and managing in the areas of advanced software architecture,
software transformation, and software engineering. Contact
him at ab@c1-wps.de.

Andreas Kornstädt is a senior software architect at C1
WPS and carries out research at Stanford University’s Center
for Computer-Assisted Research in the Humanities. Contact him
at ak@c1-wps.de or ak@ccrma.stanford.edu.

Dennis Wichmann is a software engineer at C1 WPS.
Contact him at dw@c1-wps.de.

Table 3
Three tools for Ajax acceptance tests

Tool

Selenium HtmlUnit WebDriver

Stable release Version 1.0 Version 2.5 Revision 964

Supported languages C#, Java, Perl, PHP, Python, and Ruby Java Java

Supported browsers Internet Explorer, Firefox, Safari, and Opera None (works at the protocol level) Internet Explorer and Firefox

Tools on top CubicTest, Testmaker WebTest None

Ease of writing tests Excellent Sufficient Good

Scope of test operations Good Sufficient Excellent

Performance Sufficient Excellent Good

Ease of installation Good Excellent Sufficient

Functionality for regression
and reporting

Not provided. JUnit, Fitnesse, and so on can provide that functionality by making calls to the tools’ API.

public void clickButtonByText(String buttonText) {
		 browser.click(“xpath=//input[@value=‘“ + buttonText + “‘]”);
	 }

Figure 2. A helper for locating and then clicking a button by its text. Writing
helpers can avoid long, repetitive locator expressions.

Call for Articles

Software Evolution: Maintaining Stakeholders’
Satisfaction in a Changing World

Submission Deadline: 1 November 2009 • Publication: July/August 2010

Companies, governments, and open source com-
munities spend a great deal of resources on a continual
basis to fix, adapt, and enhance their software systems.
The ability to evolve software rapidly and reliably repre-
sents a major challenge in software engineering.

Wanted: applications of research results, practical
experiences, success stories, and lessons learned related
to software evolution; practical, reliable insights that
have been derived from, or that can be applied to, real-
world software-intensive systems

Guest Editors:
Maja D’Hondt, IMEC & Vrije Universiteit Brussel, •	
Belgium; maja.dhondt@imec.be

Juan Fernández-Ramil, The Open University, UK; •	
j.f.ramil@open.ac.uk
Yann-Gaël Guéhéneuc, University of Montreal, •	
Canada; yann-gael.gueheneuc@polymtl.ca
Tom Mens, Université de Mons, Belgium; •	
tom.mens@umons.ac.be
Martin Robillard, McGill University, Canada; •	
martin@cs.mcgill.ca

For a full call for papers:
www.computer.org/software/cfp4.htm
For general author guidelines:
www.computer.org/software/author.htm
For submission details: software@computer.org

